Computational and statistical methodologies for ORFeome primary structure analysis.

Codon usage and context are biased in open reading frames (ORFs) of most genomes. Codon usage is largely influenced by biased genome G+C pressure, in particular in prokaryotes, but the general rules that govern the evolution of codon context remain largely elusive. To shed new light into this question, we have developed computational, statistical, and graphical tools for analysis of codon context on an ORFeome wide scale. Here, we describe these methodologies in detail and show how they can be used for analysis of ORFs of any genome sequenced.

[1]  S. Ottonello,et al.  Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. , 1999, Molecular biology and evolution.

[2]  F. Wright The 'effective number of codons' used in a gene. , 1990, Gene.

[3]  S. Haberman The Analysis of Residuals in Cross-Classified Tables , 1973 .

[4]  Mark Johnston,et al.  After the Duplication: Gene Loss and Adaptation in Saccharomyces Genomes , 2006, Genetics.

[5]  H. Akashi Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. , 1994, Genetics.

[6]  A. Edelman,et al.  The functioning of mammalian ClC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p. , 2005, The Biochemical journal.

[7]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[8]  M Yarus,et al.  Codon contexts from weakly expressed genes reduce expression in vivo. , 1989, Journal of molecular biology.

[9]  Alison K. Hottes,et al.  Codon usage between genomes is constrained by genome-wide mutational processes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Duan,et al.  Mammalian Mutation Pressure, Synonymous Codon Choice, and mRNA Degradation , 2003, Journal of Molecular Evolution.

[11]  Raymond F. Gesteland,et al.  Computational identification of putative programmed translational frameshift sites , 2002, Bioinform..

[12]  Alexei Fedorov,et al.  Regularities of context-dependent codon bias in eukaryotic genes. , 2002, Nucleic acids research.

[13]  Branko Borstnik,et al.  Tandem repeats in protein coding regions of primate genes. , 2002, Genome research.

[14]  G. W. Hatfield,et al.  Codon Pair Utilization Biases Influence Translational Elongation Step Times (*) , 1995, The Journal of Biological Chemistry.

[15]  Manuel A. S. Santos,et al.  Comparative context analysis of codon pairs on an ORFeome scale , 2005, Genome Biology.

[16]  S. Karlin,et al.  Amino acid runs in eukaryotic proteomes and disease associations , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jeffrey S. Simonoff,et al.  Analyzing Categorical Data , 2003 .

[18]  Ivan Ivanov,et al.  Missing Codon Pairs in the Genome of Escherichia Coli , 2002, Bioinform..

[19]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[20]  Liane Gagnier,et al.  Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. , 2005, Genome research.

[21]  E. Young,et al.  Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. , 2000, Genetics.

[22]  Hiroshi Sato,et al.  The C-terminal Region of Membrane Type Matrix Metalloproteinase Is a Functional Transmembrane Domain Required for Pro-gelatinase A Activation (*) , 1995, The Journal of Biological Chemistry.

[23]  O. Berg,et al.  Codon bias in Escherichia coli: the influence of codon context on mutation and selection. , 1997, Nucleic acids research.

[24]  P. Yen,et al.  Polymorphisms associated with the DAZ genes on the human Y chromosome. , 2005, Genomics.

[25]  Brian Everitt,et al.  Cluster analysis , 1974 .