Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm

In this paper, algorithms are presented for the optimum design of geometrically nonlinear steel space frames using tabu search and genetic algorithm. Tabu search utilizes the features of short-term memory facility (tabu list) and aspiration criteria. Genetic algorithm employs reproduction, crossover and mutation operators. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) specification, maximum drift (lateral displacement) and interstorey drift constraints, size constraints for columns were imposed on frames. The algorithms were applied to the optimum design of three space frame structures. The designs obtained using tabu search were compared to those where genetic algorithm was considered. The comparisons showed that the former algorithm resulted in lighter structures.

[1]  W. M. Jenkins,et al.  PLANE FRAME OPTIMUM DESIGN ENVIRONMENT BASED ON GENETIC ALGORITHM , 1992 .

[2]  N. Null Minimum Design Loads for Buildings and Other Structures , 2003 .

[3]  William R. Spillers,et al.  Geometric stiffness matrix for space frames , 1990 .

[4]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[5]  S. Manoharan,et al.  A comparison of search mechanisms for structural optimization , 1999 .

[6]  N. Hu Tabu search method with random moves for globally optimal design , 1992 .

[7]  M. S. Hayalioglu,et al.  Optimum design of geometrically non-linear elastic–plastic steel frames via genetic algorithm , 2000 .

[8]  William R. Spillers,et al.  Analysis of Geometrically Nonlinear Structures , 1994 .

[9]  Anoop K. Dhingra,et al.  DISCRETE AND CONTINUOUS VARIABLE STRUCTURAL OPTIMIZATION USING TABU SEARCH , 1995 .

[10]  Chun Man Chan,et al.  An optimality criteria algorithm for tall steel building design using commercial standard sections , 1992 .

[11]  Niels Olhoff,et al.  Optimization Methods in Structural Design , 1982 .

[12]  K. G. Sharma,et al.  Minimum weight design of trusses using improved move limit method of sequential linear programming , 1987 .

[13]  Hojjat Adeli,et al.  Impact of vectorization on large-scale structural optimization , 1994 .

[14]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[15]  J. A. Bland A memory-based technique for optimal structural design , 1998 .

[16]  Hojjat Adeli,et al.  Optimum Load and Resistance Factor Design of Steel Space-Frame Structures , 1997 .

[17]  Jamshid Ghaboussi,et al.  Evolution of Optimum Structural Shapes Using Genetic Algorithm , 1998 .

[18]  S. O. Degertekin,et al.  Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization , 2004 .

[19]  Shahram Pezeshk,et al.  Design of Nonlinear Framed Structures Using Genetic Optimization , 2000 .

[20]  M. S. Hayalioglu Optimum load and resistance factor design of steel space frames using genetic algorithm , 2001 .

[21]  Shahram Pezeshk,et al.  Optimized Design of Two-Dimensional Structures Using a Genetic Algorithm , 1998 .

[22]  W. M. Jenkins,et al.  Towards structural optimization via the genetic algorithm , 1991 .

[23]  Mehmet Polat Saka,et al.  Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm , 2001 .

[24]  J. A. Bland STRUCTURAL DESIGN OPTIMIZATION WITH RELIABILITY CONSTRAINTS USING TABU SEARCH , 1998 .

[25]  Mehmet Polat Saka,et al.  Genetic algorithm based optimum design of nonlinear planar steel frames with various semi- rigid connections , 2003 .

[26]  J. A. Bland Discrete-variable optimal structural design using tabu search , 1995 .

[27]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[28]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[29]  A. K. Dhingra,et al.  Optimization of truss topology using tabu search , 1995 .

[30]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[31]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[32]  Donald E. Grierson,et al.  An efficient resizing technique for the design of tall steel buildings subject to multiple drift constraints , 1993 .

[33]  Du Ming-zhu,et al.  An improved Templeman's algorithm for the optimum design of trusses with discrete member sizes , 1986 .