Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal

[1]  P. Kiely,et al.  RACK1, A multifaceted scaffolding protein: Structure and function , 2011, Cell Communication and Signaling.

[2]  H. Varmus,et al.  An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[3]  I. Brierley,et al.  Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal☆ , 1991, Journal of Molecular Biology.

[4]  J. F. Atkins,et al.  Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Honigman,et al.  cis acting RNA sequences control the gag-pol translation readthrough in murine leukemia virus , 1991, Virology.

[6]  J. D. den Boon,et al.  Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily , 1991, Journal of virology.

[7]  Z. Tsuchihashi,et al.  Translational frameshifting in the Escherichia coli dnaX gene in vitro. , 1991, Nucleic acids research.

[8]  R. Weiss,et al.  Ribosome gymnastics—Degree of difficulty 9.5, style 10.0 , 1990, Cell.

[9]  D. Hatfield,et al.  The where, what and how of ribosomal frameshifting in retroviral protein synthesis , 1990, Trends in Biochemical Sciences.

[10]  D. Hatfield,et al.  Chromatographic analysis of the aminoacyl-trnas which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV , 1989, Virology.

[11]  R. Weiss,et al.  E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. , 1989, The New biologist.

[12]  S. Lommel,et al.  The complete nucleotide sequence and genome organization of red clover necrotic mosaic virus RNA-1. , 1989, Virology.

[13]  S. Inglis,et al.  Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes , 1989, Virology.

[14]  I. Brierley,et al.  Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot , 1989, Cell.

[15]  N. Heisterkamp,et al.  Nucleotide sequence of both reciprocal translocation junction regions in a patient with Ph positive acute lymphoblastic leukaemia, with a breakpoint within the first intron of the BCR gene. , 1989, Nucleic acids research.

[16]  Martin Braddock,et al.  HIV expression strategies: Ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems , 1988, Cell.

[17]  H. Varmus,et al.  Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region , 1988, Cell.

[18]  H. Varmus,et al.  Characterization of ribosomal frameshifting in HIV-1 gag-pol expression , 1988, Nature.

[19]  I. Brierley,et al.  An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. , 1987, The EMBO journal.

[20]  H. Varmus,et al.  Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Peters,et al.  Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol , 1987, Journal of virology.

[22]  H. Varmus,et al.  Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. , 1985, Science.

[23]  S. Yokoyama,et al.  Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Suter,et al.  Queuosine modification of the wobble base in tRNAHis influences ‘in vivo’ decoding properties. , 1985, The EMBO journal.

[25]  D. Melton,et al.  Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. , 1984, Nucleic acids research.

[26]  J. F. Atkins,et al.  The nucleotide sequence of the first externally suppressible–1 frameshift mutant, and of some nearby leaky frameshift mutants. , 1983, The EMBO journal.

[27]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[28]  R. Cortese,et al.  pEMBL: a new family of single stranded plasmids. , 1983, Nucleic acids research.

[29]  N. Zinder,et al.  Functional analysis of bacteriophage f1 intergenic region. , 1981, Virology.

[30]  T. Samuelsson,et al.  Codon reading and translational error. Reading of the glutamine and lysine codons during protein synthesis in vitro. , 1981, The Journal of biological chemistry.

[31]  B. Roe,et al.  Structural comparison of human, bovine, rat, and Walker 256 carcinosarcoma asparaginyl-tRNA. , 1980, Biochimica et biophysica acta.

[32]  T. Fox,et al.  Leaky +1 and −1 frameshift mutations at the same site in a yeast mitochondrial gene , 1980, Nature.

[33]  J. Horwitz,et al.  The nucleotide sequence of two bovine lens phenylalanine tRNAs. Possible activation of a new phenylalanine tRNA gene during differentiation of lens cells. , 1980, The Journal of biological chemistry.

[34]  R. Pirtle,et al.  The nucleotide sequence of a major species of leucine tRNA from bovine liver. , 1980, Nucleic acids research.

[35]  H. Birnboim,et al.  A rapid alkaline extraction procedure for screening recombinant plasmid DNA. , 1979, Nucleic acids research.

[36]  H. Gross,et al.  Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. , 1979, European journal of biochemistry.

[37]  B. Roe,et al.  Comparison of rat liver and Walker 256 carcinosarcoma tRNAs. , 1979, Nucleic acids research.

[38]  B. Roe,et al.  The nucleotide sequence of rat liver tRNAAsn. , 1978, Biochemical and biophysical research communications.

[39]  G. Keith,et al.  The primary structure of rabbit, calf and bovine liver tRNAPhe. , 1978, Biochimica et biophysica acta.

[40]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Mehler,et al.  Primary structure of tRNA-Lys of E. coli B. , 1975, Nucleic acids research.

[42]  B. Roe,et al.  Sequence studies on tRNAPhe from placenta: comparison with known sequences of tRNAPhe from other normal mammalian tissues. , 1975, Biochemical and biophysical research communications.

[43]  F. Crick Codon--anticodon pairing: the wobble hypothesis. , 1966, Journal of molecular biology.

[44]  R. Wickner,et al.  A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. W. Smith,et al.  Structure and function of suppressor tRNAs in higher eukaryotes. , 1990, Critical reviews in biochemistry and molecular biology.

[46]  A. Kingsman,et al.  HIV pol Expression via a Ribosomal Frameshift , 1990 .

[47]  C. Pleij,et al.  RNA pseudoknots: structure, detection, and prediction. , 1989, Methods in enzymology.

[48]  T. Brown,et al.  Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. , 1987, The Journal of general virology.

[49]  S. Kidd,et al.  An improved filamentous helper phage for generating single-stranded plasmid DNA. , 1986, Gene.

[50]  Thomas A. Kunkel,et al.  Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[52]  D. Stibenz [Introduction to polyacrylamide gel electrophoresis]. , 1975, Acta histochemica. Supplementband.