Chaotic bands in the Mandelbrot set
暂无分享,去创建一个
Fausto Montoya Vitini | Gerardo Pastor Dégano | Miguel Romera | Gonzalo Álvarez | G. Álvarez | M. Romera | F. M. Vitini | G. Dégano
[1] E. Lorenz. NOISY PERIODICITY AND REVERSE BIFURCATION * , 1980 .
[2] F. Montoya,et al. Harmonic structure of one-dimensional quadratic maps , 1997 .
[3] Nicholas C. Metropolis,et al. On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.
[4] B. Mandelbrot. On the quadratic mapping z→z2-μ for complex μ and z: The fractal structure of its M set, and scaling , 1983 .
[5] P. J. Myrberg. Iteration der reellen Polynome zweiten Grades III , 1964 .
[6] A. N. Sharkovskiĭ,et al. Difference Equations and Their Applications , 1993 .
[7] A. Klebanoff. π IN THE MANDELBROT SET , 2001 .
[8] R. Devaney. The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence , 1999 .
[9] Gonzalo Álvarez,et al. External arguments of Douady cauliflowers in the Mandelbrot set , 2004, Comput. Graph..
[10] Gonzalo Álvarez,et al. Shrubs in the Mandelbrot Set Ordering , 2003, Int. J. Bifurc. Chaos.
[11] J. Milnor. Periodic Orbits, Externals Rays and the Mandelbrot Set: An Expository Account , 1999, Astérisque.
[12] M. M. Rocha,et al. GEOMETRY OF THE ANTENNAS IN THE MANDELBROT SET , 2002 .
[13] R. Devaney. THE FRACTAL GEOMETRY OF THE MANDELBROT SET 2: HOW TO COUNT AND HOW TO ADD , 1995 .
[14] Miguel Romera,et al. On the cusp and the tip of a midget in the Mandelbrot set antenna , 1996 .