An overview of bifurcation, chaos and nonlinear dynamics in control systems

[1]  Leon O. Chua,et al.  The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .

[2]  B. Ydstie Bifurcations and complex dynamics in adaptive control systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[3]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[4]  Leon O. Chua,et al.  Fractals in the twist-and-flip circuit , 1993, Proc. IEEE.

[5]  E. Abed Bifurcation-theoretic issues in the control of voltage collapse , 1995 .

[6]  A Beuter,et al.  Feedback and delays in neurological diseases: a modeling study using dynamical systems. , 1993, Bulletin of mathematical biology.

[7]  John Baillieul,et al.  Chaotic motion in nonlinear feedback systems , 1980 .

[8]  Martin Golubitsky,et al.  Classification and Unfoldings of Degenerate Hopf Bifurcations , 1981 .

[9]  W. Kliemann,et al.  A Dynamical Systems Approach to Control , 1992 .

[10]  Venkataramana Ajjarapu,et al.  Period-doubling route to chaos in an electrical power system , 1993 .

[11]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[12]  L. Chua,et al.  The double scroll family , 1986 .

[13]  Eyad H. Abed,et al.  Feedback Control of Bifurcation and Chaos in Dynamical Systems , 1993 .

[14]  J. Reyn,et al.  Classification and description of the singular points of a system of three linear differential equations , 1964 .

[15]  Claudio A. Canizares,et al.  Point of collapse and continuation methods for large AC/DC systems , 1993 .

[16]  J. Alexander,et al.  Dynamic bifurcations in a power system model exhibiting voltage collapse , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[17]  Floris Takens,et al.  Unfoldings of certain singularities of vectorfields: Generalized Hopf bifurcations , 1973 .

[18]  Wolfgang Kliemann,et al.  Lyapunov exponents of control flows , 1991 .

[19]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[20]  P. Morrison,et al.  Book-Review - the Cosmic Inquirers - Modern Telescopes and Their Makers , 1986 .

[21]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[22]  O. Rössler An equation for hyperchaos , 1979 .

[23]  B. Hassard,et al.  Isolated periodic solutions of the Hodgkin-Huxley equations. , 1989, Journal of theoretical biology.

[24]  Iven M. Y. Mareels,et al.  Non-linear dynamics in adaptive control: Chaotic and periodic stabilization , 1986, Autom..

[25]  Toshimitsu Ushio,et al.  Chaotic behavior in piecewise-linear sampled-data control systems , 1985 .

[26]  Eyad H. Abed,et al.  Bifurcations, chaos, and crises in voltage collapse of a model power system , 1994 .

[27]  B. Erik Ydstie,et al.  Chaos and Strange Attractors in Adaptive Control Systems , 1987 .

[28]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[29]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[30]  Robert L. Devaney,et al.  Chaos, fractals, and dynamics - computer experiments in mathematics , 1990 .

[31]  Hsueh-Chia Chang,et al.  Global effects of controller saturation on closed-loop dynamics , 1985 .

[32]  Eyad H. Abed,et al.  Families of Lyapunov functions for nonlinear systems in critical cases , 1990, 29th IEEE Conference on Decision and Control.

[33]  C. E. D'Attellis,et al.  A remark on chaotic behavior in adaptive control systems , 1994, IEEE Trans. Autom. Control..

[34]  B. Erik Ydstie,et al.  Bifurcation in model reference adaptive control systems , 1988 .

[35]  B. Erik Ydstie,et al.  Small amplitude chaos and ergodicity in adaptive control , 1992, Autom..

[36]  J. Milnor On the concept of attractor , 1985 .

[37]  Felix F. Wu,et al.  Chaos in a simple power system , 1993 .

[38]  V. Ajjarapu,et al.  Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system , 1991, [Proceedings] Conference Papers 1991 Power Industry Computer Application Conference.

[39]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[40]  P E Rapp,et al.  Periodic metabolic systems: Oscillations in multiple-loop negative feedback biochemical control networks , 1978, Journal of mathematical biology.

[41]  I. Dobson Computing a closest bifurcation instability in multidimensional parameter space , 1993 .

[42]  Leon Y. Bahar,et al.  Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse , 1986 .

[43]  J. Rappaz,et al.  On numerical approximation in bifurcation theory , 1990 .

[44]  B. Hassard,et al.  Bifurcation formulae derived from center manifold theory , 1978 .

[45]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[46]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[47]  Gonzalo J. Rey,et al.  Qualitative Classification of the Dynamics of a Class of Adaptive Feedback Systems , 1991, 1991 American Control Conference.

[48]  H. Schuster Deterministic chaos: An introduction , 1984 .

[49]  Leon Glass,et al.  Time delays, oscillations, and chaos in physiological control systems , 1988 .

[50]  A. I. Mees,et al.  Dynamics of feedback systems , 1981 .

[51]  I. Postlethwaite,et al.  The generalized Nyquist stability criterion and multivariable root loci , 1977 .

[52]  Klavs F. Jensen,et al.  Bifurcation phenomena in CSTR dynamics: A system with extraneous thermal capacitance , 1986 .

[53]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[54]  Guanrong Chen,et al.  From Chaos to Order - Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical Systems , 1993 .

[55]  Eyad H. Abed,et al.  Linear feedback stabilization of nonlinear systems with an uncontrollable critical mode , 1993, Autom..

[56]  Maciej Ogorzalek,et al.  Taming chaos. II. Control , 1993 .

[57]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[58]  L. Chua The Genesis of Chua's circuit , 1992 .

[59]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[60]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[61]  Hsueh-Chia Chang,et al.  Dynamics of delayed systems under feedback control , 1989 .

[62]  Colin Sparrow,et al.  Chaos in a three-dimensional single loop feedback system with a piecewice linear feedbackk function , 1981 .

[63]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[64]  Mary L. Boas,et al.  A New Use for an Old Counterexample , 1975 .

[65]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[66]  W. Kliemann,et al.  On Control Sets and Feedback for Nonlinear Systems , 1992 .

[67]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[68]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[69]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[70]  E. Abed,et al.  Local feedback stabilization and bifurcation control, I. Hopf bifurcation , 1986 .

[71]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[72]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[73]  Yuan-Yih Hsu,et al.  Low Frequency Oscillations in Longitudinal Power Systems: Experience with Dynamic Stability of Taiwan Power System , 1987, IEEE Transactions on Power Systems.

[74]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[75]  Iven M. Y. Mareels,et al.  Non-linear dynamics in adaptive control: Periodic and chaotic stabilization - II. Analysis , 1988, Autom..

[76]  Guanrong Chen,et al.  Control of chaos-a survey , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[77]  Ian Dobson,et al.  Towards a theory of voltage collapse in electric power systems , 1989 .

[78]  G. J. Rogers,et al.  A fundamental study of inter-area oscillations in power systems , 1991 .

[79]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[80]  Felix F. Wu,et al.  Bifurcation and chaos in power systems , 1993 .

[81]  Eyad H. Abed,et al.  Bifurcation Control of Chaotic Dynamical Systems , 1992 .

[82]  Ian Dobson,et al.  Voltage collapse precipitated by the immediate change in stability when generator reactive power limits are encountered , 1992 .

[83]  B. Hassard,et al.  Degenerate Hopf bifurcation and isolated periodic solutions of the Hodgkin-Huxley model with varying sodium ion concentration. , 1991, Journal of theoretical biology.

[84]  Guanrong Chen,et al.  FREQUENCY DOMAIN APPROACH TO COMPUTATION AND ANALYSIS OF BIFURCATIONS AND LIMIT CYCLES: A TUTORIAL , 1993 .

[85]  I. Dobson,et al.  New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse , 1993 .

[86]  Pravin Varaiya,et al.  Degenerate Hopf bifurcations in power systems , 1988 .

[87]  Toshimitsu Ushio,et al.  Chaos in non-linear sampled-data control systems , 1983 .

[88]  H. Kielhöfer Hopf bifurcation at multiple eigenvalues , 1979 .

[89]  P. Varaiya,et al.  Nonlinear oscillations in power systems , 1984 .

[90]  Liang-Heng Chen,et al.  Bifurcation characteristics of nonlinear systems under conventional pid control , 1984 .

[91]  F. Takens,et al.  On the nature of turbulence , 1971 .

[92]  H. Schättler,et al.  Voltage dynamics: study of a generator with voltage control, transmission, and matched MW load , 1992 .

[93]  G. Haller,et al.  Codimension Two Bifurcation in an Approximate Model for Delayed Robot Control , 1991 .

[94]  Hsueh-Chia Chang,et al.  Transition to Chaos from a Two-Torus in a Delayed Feedback System , 1991 .

[95]  E. Abed,et al.  Local feedback stabilization and bifurcation control, II. Stationary bifurcation , 1987 .

[96]  J. C. Allen Factors contributing to chaos in population feedback systems , 1990 .

[97]  A. D. Briuno,et al.  Local methods in nonlinear differential equations , 1989 .