Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces

Koopman decomposition is a non-linear generalization of eigen decomposition, and is being increasingly utilized in the analysis of spatio-temporal dynamics. Well-known techniques such as the dynamic mode decomposition (DMD) and its variants provide approximations to the Koopman operator, and have been applied extensively in many fluid dynamic problems. Despite being endowed with a richer dictionary of nonlinear observables, nonlinear variants of the DMD, such as extended/kernel dynamic mode decomposition (EDMD/KDMD) are seldom applied to large-scale problems primarily due to the difficulty of discerning the Koopman invariant subspace from thousands of resulting Koopman triplets: eigenvalues, eigenvectors, and modes. To address this issue, we revisit the formulation of EDMD and KDMD, and propose an algorithm based on multi-task feature learning to extract the most informative Koopman invariant subspace by removing redundant and spurious Koopman triplets. These algorithms can be viewed as sparsity promoting extensions of EDMD/KDMD and are presented in an open-source package. Further, we extend KDMD to a continuous-time setting and show a relationship between the present algorithm, sparsity-promoting DMD and an empirical criterion from the viewpoint of non-convex optimization. The effectiveness of our algorithm is demonstrated on examples ranging from simple dynamical systems to two-dimensional cylinder wake flows at different Reynolds numbers and a three-dimensional turbulent ship air-wake flow. The latter two problems are designed such that very strong nonlinear transients are present in the flow evolution, thus requiring accurate approximation of the Koopman operator. Underlying physical mechanisms are analyzed and the results are compared to existing theoretical expositions and numerical approximations.

[1]  Clarence W. Rowley,et al.  Evaluating the accuracy of the dynamic mode decomposition , 2016, Journal of Computational Dynamics.

[2]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[3]  Steven L. Brunton,et al.  Chaos as an intermittently forced linear system , 2016, Nature Communications.

[4]  Steven L. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[5]  Peter J. Schmid,et al.  Decomposition of time-resolved tomographic PIV , 2012 .

[6]  Aleksandar Jemcov,et al.  OpenFOAM: A C++ Library for Complex Physics Simulations , 2007 .

[7]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[8]  Anthony M. DeGennaro,et al.  Scalable Extended Dynamic Mode Decomposition Using Random Kernel Approximation , 2017, SIAM J. Sci. Comput..

[9]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[10]  R. M. Jungers,et al.  Non-local Linearization of Nonlinear Differential Equations via Polyflows , 2019, 2019 American Control Conference (ACC).

[11]  F. White Viscous Fluid Flow , 1974 .

[12]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[13]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[14]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[15]  Jack J. Dongarra,et al.  The Singular Value Decomposition: Anatomy of Optimizing an Algorithm for Extreme Scale , 2018, SIAM Rev..

[16]  Igor Mezic,et al.  Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator , 2016, SIAM J. Appl. Dyn. Syst..

[17]  Todd Murphey,et al.  Local Koopman Operators for Data-Driven Control of Robotic Systems , 2019, Robotics: Science and Systems.

[18]  Igor Mezic,et al.  On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator , 2017, J. Nonlinear Sci..

[19]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry: OTHER APPLICATIONS AND RELATED WORK , 2012 .

[20]  Weixing Yuan,et al.  Combined numerical and experimental simulations of unsteady ship airwakes , 2018, Computers & Fluids.

[21]  M. Kushner,et al.  Plasma-induced flow instabilities in atmospheric pressure plasma jets , 2017 .

[22]  P. Schmid Nonmodal Stability Theory , 2007 .

[23]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[24]  J. Nathan Kutz,et al.  Variable Projection Methods for an Optimized Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..

[25]  Philip H. W. Leong,et al.  High-dimensional time series prediction using kernel-based Koopman mode regression , 2017, Nonlinear Dynamics.

[26]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[27]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[28]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[29]  Naoya Takeishi,et al.  Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition , 2017, NIPS.

[30]  Karthik Duraisamy,et al.  Physics-Informed Probabilistic Learning of Linear Embeddings of Nonlinear Dynamics with Guaranteed Stability , 2019, SIAM J. Appl. Dyn. Syst..

[31]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[32]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Cortés,et al.  Efficient Identification of Linear Evolutions in Nonlinear Vector Fields: Koopman Invariant Subspaces , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[34]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[35]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[36]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[37]  I. Owen,et al.  An investigation of ship airwakes using Detached-Eddy Simulation , 2010 .

[38]  Karthik Duraisamy,et al.  Modal Analysis of Fluid Flows: Applications and Outlook , 2019, AIAA Journal.

[39]  I. Mezić,et al.  A data-driven Koopman model predictive control framework for nonlinear flows , 2018, 1804.05291.

[40]  Matthew O. Williams,et al.  A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.

[41]  Ioannis G Kevrekidis,et al.  Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. , 2017, Chaos.

[42]  Karthik Duraisamy,et al.  Challenges in Reduced Order Modeling of Reacting Flows , 2018, 2018 Joint Propulsion Conference.

[43]  Linyu Wang,et al.  A re-weighted smoothed L0 -norm regularized sparse reconstructed algorithm for linear inverse problems , 2019, Journal of Physics Communications.

[44]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[45]  Cheng Huang,et al.  Reduced-Order Modeling Framework for Combustor Instabilities Using Truncated Domain Training , 2018, AIAA Journal.

[46]  Earl H. Dowell,et al.  Modeling of Fluid-Structure Interaction , 2001 .

[47]  Peretz P. Friedmann,et al.  Simulation of Maritime Helicopter Dynamics During Approach to Landing With Time-Accurate Wind-Over-Deck , 2019, AIAA Scitech 2019 Forum.

[48]  Massimiliano Pontil,et al.  Multi-task Learning , 2020, Transfer Learning.

[49]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[50]  Uwe Fey,et al.  A new Strouhal–Reynolds-number relationship for the circular cylinder in the range 47 , 1998 .

[51]  W. H. Reid,et al.  Hydrodynamic Stability: Contents , 2004 .

[52]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[53]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[54]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[55]  K. Duraisamy,et al.  On the structure of time-delay embedding in linear models of non-linear dynamical systems. , 2019, Chaos.

[56]  H. Minh,et al.  Some Properties of Gaussian Reproducing Kernel Hilbert Spaces and Their Implications for Function Approximation and Learning Theory , 2010 .

[57]  Wotao Yin,et al.  Consistent Dynamic Mode Decomposition , 2019, SIAM J. Appl. Dyn. Syst..

[58]  Steven L. Brunton,et al.  Data-driven discovery of Koopman eigenfunctions for control , 2017, Mach. Learn. Sci. Technol..

[59]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[60]  William Parry,et al.  Topics in Ergodic Theory , 1981 .

[61]  Weiwei Zhang,et al.  An improved criterion to select dominant modes from dynamic mode decomposition , 2017 .

[62]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[63]  Uri Shaham,et al.  Dynamic Mode Decomposition , 2013 .

[64]  Massimiliano Pontil,et al.  Convex multi-task feature learning , 2008, Machine Learning.

[65]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[66]  Soledad Le Clainche Martínez,et al.  Higher Order Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..

[67]  Clarence W. Rowley,et al.  Linearly-Recurrent Autoencoder Networks for Learning Dynamics , 2017, SIAM J. Appl. Dyn. Syst..

[68]  Lawrence K. Saul,et al.  Kernel Methods for Deep Learning , 2009, NIPS.

[69]  Jieping Ye,et al.  Multi-Task Learning for Spatio-Temporal Event Forecasting , 2015, KDD.

[70]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[71]  Karthik Duraisamy,et al.  Multi-level Convolutional Autoencoder Networks for Parametric Prediction of Spatio-temporal Dynamics , 2019, Computer Methods in Applied Mechanics and Engineering.

[72]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[73]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[74]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[75]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[76]  K. Duraisamy,et al.  The Adjoint Petrov–Galerkin method for non-linear model reduction , 2018, Computer Methods in Applied Mechanics and Engineering.

[77]  Dennis S. Bernstein,et al.  What Is the Koopman Operator? A Simplified Treatment for Discrete-Time Systems , 2019, 2019 American Control Conference (ACC).

[78]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[79]  Steven L. Brunton,et al.  Time-Delay Observables for Koopman: Theory and Applications , 2018, SIAM J. Appl. Dyn. Syst..

[80]  Linan Zhang,et al.  On the Convergence of the SINDy Algorithm , 2018, Multiscale Model. Simul..

[81]  Soumya Kundu,et al.  Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems , 2017, 2019 American Control Conference (ACC).

[82]  Charles A. Micchelli,et al.  A Spectral Regularization Framework for Multi-Task Structure Learning , 2007, NIPS.

[83]  Igor Mezic,et al.  A Data-Driven Koopman Model Predictive Control Framework for Nonlinear Partial Differential Equations , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[84]  Bernd R. Noack,et al.  Model reduction using Dynamic Mode Decomposition , 2014 .

[85]  Karthik Duraisamy,et al.  Long-time predictive modeling of nonlinear dynamical systems using neural networks , 2018, Complex..

[86]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[87]  Hassan Arbabi,et al.  Study of dynamics in post-transient flows using Koopman mode decomposition , 2017, 1704.00813.