Formamides as Lewis Base Catalysts in SN Reactions-Efficient Transformation of Alcohols into Chlorides, Amines, and Ethers.

A simple formamide catalyst facilitates the efficient transformation of alcohols into alkyl chlorides with benzoyl chloride as the sole reagent. These nucleophilic substitutions proceed through iminium-activated alcohols as intermediates. The novel method, which can be even performed under solvent-free conditions, is distinguished by an excellent functional group tolerance, scalability (>100 g) and waste-balance (E-factor down to 2). Chiral substrates are converted with excellent levels of stereochemical inversion (99 %→≥95 % ee). In a practical one-pot procedure, the primary formed chlorides can be further transformed into amines, azides, ethers, sulfides, and nitriles. The value of the method was demonstrated in straightforward syntheses of the drugs rac-Clopidogrel and S-Fendiline.

[1]  Joseph A Buonomo,et al.  Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System , 2015, Angewandte Chemie.

[2]  T. Lambert,et al.  The development of catalytic nucleophilic substitution reactions: challenges, progress and future directions. , 2014, Organic & biomolecular chemistry.

[3]  T. V. Nguyen,et al.  Aromatic cation activation: nucleophilic substitution of alcohols and carboxylic acids. , 2014, Organic letters.

[4]  T. Taniguchi,et al.  Recyclable Mitsunobu reagents: catalytic Mitsunobu reactions with an iron catalyst and atmospheric oxygen. , 2013, Angewandte Chemie.

[5]  E. Carreira,et al.  Recent Advances in the Total Synthesis of Chlorosulfolipids , 2012 .

[6]  Peter J Dunn,et al.  The importance of green chemistry in process research and development. , 2012, Chemical Society reviews.

[7]  Roger A Sheldon,et al.  Fundamentals of green chemistry: efficiency in reaction design. , 2012, Chemical Society reviews.

[8]  T. Lambert,et al.  Development of a catalytic platform for nucleophilic substitution: cyclopropenone-catalyzed chlorodehydration of alcohols. , 2011, Angewandte Chemie.

[9]  F. Rutjes,et al.  In situ phosphine oxide reduction: a catalytic Appel reaction. , 2011, Chemistry.

[10]  A. J. Blake,et al.  Catalytic phosphorus(V)-mediated nucleophilic substitution reactions: development of a catalytic Appel reaction. , 2011, The Journal of organic chemistry.

[11]  P. Cozzi,et al.  Direct Nucleophilic SN1‐Type Reactions of Alcohols , 2011 .

[12]  Jagan M. R. Narayanam,et al.  Visible-light-mediated conversion of alcohols to halides. , 2011, Nature chemistry.

[13]  J. An,et al.  Phosphine oxide-catalysed chlorination reactions of alcohols under Appel conditions. , 2010, Chemical communications.

[14]  Pradeep Kumar,et al.  Pivaloyl chloride/DMF: a new reagent for conversion of alcohols to chlorides , 2010 .

[15]  Paul Anastas,et al.  Green chemistry: principles and practice. , 2010, Chemical Society reviews.

[16]  Phil S. Baran,et al.  The economies of synthesis. , 2009, Chemical Society reviews.

[17]  E. Balaraman,et al.  Mitsunobu and related reactions: advances and applications. , 2009, Chemical reviews.

[18]  Chao-Jun Li,et al.  Green chemistry for chemical synthesis , 2008, Proceedings of the National Academy of Sciences.

[19]  Roger A. Sheldon,et al.  The E Factor: fifteen years on , 2007 .

[20]  P. Toy,et al.  The Mitsunobu reaction: origin, mechanism, improvements, and applications. , 2007, Chemistry, an Asian journal.

[21]  John D. Hayler,et al.  Key green chemistry research areas—a perspective from pharmaceutical manufacturers , 2007 .

[22]  P. Toy,et al.  Organocatalytic Mitsunobu reactions. , 2006, Journal of the American Chemical Society.

[23]  D. Hughes,et al.  The Mitsunobu Reaction , 2004 .

[24]  Marco Eissen,et al.  Environmental performance metrics for daily use in synthetic chemistry. , 2002, Chemistry.

[25]  G. Giacomelli,et al.  An efficient route to alkyl chlorides from alcohols using the complex TCT/DMF. , 2002, Organic letters.

[26]  J. Metzger Solvent-Free Organic Syntheses. , 1998, Angewandte Chemie.

[27]  J. Metzger Lösungsmittelfreie organische Synthesen , 1998 .

[28]  Gordon W. Gribble,et al.  Naturally Occurring Organohalogen Compounds , 1998 .

[29]  D. C. Snyder Conversion of Alcohols to Chlorides by TMSCl and DMSO , 1995 .

[30]  G. Verardo,et al.  The reaction between acyl halides and alcohols: Alkyl halide vs. Ester formation , 1994 .

[31]  Jong Gun Lee,et al.  Selenium dioxide catalyzed conversion of alcohols to alkyl chlorides by chlorotrimethylsilane , 1988 .

[32]  M. Yoshihara,et al.  Conversion of Alcohols to Alkyl Halides using Iminium Salts , 1980 .

[33]  H. R. Hudson,et al.  Factors in the formation of isomerically and optically pure alkyl halides. Part XI. Vilsmeier reagents for the replacement of a hydroxy-group by chlorine or bromine , 1976 .

[34]  R. Appel Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P ? N Linkage , 1975 .

[35]  R. Appel Tertiäres Phosphan/Tetrachlormethan, ein vielseitiges Reagens zur Chlorierung, Dehydratisierung und PN‐Verknüpfung , 1975 .

[36]  H. Weidinger,et al.  Amidchloride und Carbamidchloride , 1960 .

[37]  H. H. Bosshard,et al.  Eine Methode zur katalysierten Herstellung von Carbonsäure- und Sulfosäure-chloriden mit Thionylchlorid† , 1959 .