Insights into the genome of the xanthan-producing phytopathogen Xanthomonas arboricola pv. pruni 109 by comparative genomic hybridization.

[1]  J. C. Dunegan The Bacterial Spot Disease of the Peach and Other Stone Fruits , 1932 .

[2]  C. W. Hesseltine,et al.  Maintenance of cultures of industrially important microorganisms. , 1955, Applied microbiology.

[3]  A. Hayward BACTERIOPHAGE SENSITIVITY AND BIOCHEMICAL GROUP IN XANTHOMONAS MALVACEARUM. , 1964, Journal of general microbiology.

[4]  W. Volk Cell Wall Lipopolysaccharides from Xanthomonas Species , 1966, Journal of bacteriology.

[5]  W. Volk Quantitative Assay of Polysaccharide Components Obtained from Cell Wall Lipopolysaccharides of Xanthomonas Species , 1968, Journal of bacteriology.

[6]  Herbert Stone,et al.  定量的に記述された分析結果(QDA法)による官能試験の評価 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1974 .

[7]  A. Jeanes Extracellular microbial polysaccharides; new hydrocolloids of interest to the food industry , 1974 .

[8]  S. T. Liu,et al.  Rapid procedure for detection and isolation of large and small plasmids , 1981, Journal of bacteriology.

[9]  C. Bazzi,et al.  Updated notes on the most important bacterial diseases of fruit plants in the nursery. , 1984 .

[10]  J. M. Dow,et al.  A gene cluster in Xanthomonas campestris pv. campestris required for pathogenicity controls the excretion of polygalacturonate lyase and other enzymes , 1987 .

[11]  J. M. Dow,et al.  Cloning of two endoglucanase genes of Xanthomonas campestres pv. Campestris: analysis of the role of the major endoglucanase in pathogenesis , 1988 .

[12]  J. M. Dow,et al.  Molecular cloning of a polygalacturonate lyase gene from Xanthomonas campestris pv. campestris and role of the gene product in pathogenicity , 1989 .

[13]  A. Danchin,et al.  A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity , 1990, Journal of bacteriology.

[14]  A. Pühler,et al.  Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis , 1992, Journal of bacteriology.

[15]  S. Lory,et al.  Structure-function and biogenesis of the type IV pili. , 1993, Annual review of microbiology.

[16]  A. Pühler,et al.  A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose , 1993, Journal of bacteriology.

[17]  J. Swings,et al.  Reclassification of Xanthomonas , 1995 .

[18]  J. M. Dow,et al.  Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. , 1995, Molecular plant-microbe interactions : MPMI.

[19]  J. Ogawa,et al.  Compendium of stone fruit diseases. , 1995 .

[20]  A. Danchin,et al.  Fructose phosphotransferase system of Xanthomonas campestris pv. campestris: characterization of the fruB gene. , 1995, Microbiology.

[21]  J. Swings,et al.  Are classification and phytopathological diversity compatible in Xanthomonas? , 1997, Journal of Industrial Microbiology and Biotechnology.

[22]  U. Mazzucchi,et al.  AMPLIFIED FRAGMENT LENGTH POLYMORPHISM FINGERPRINTING OF XANTHOMONAS ARBORICOLA PV. PRUNI , 1999 .

[23]  Jan LW Rademaker,et al.  Synopsis on the taxonomy of the genus xanthomonas. , 2000, Phytopathology.

[24]  A. Poplawsky,et al.  Biological Role of Xanthomonadin Pigments inXanthomonas campestris pv. Campestris , 2000, Applied and Environmental Microbiology.

[25]  A. Pühler,et al.  The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). , 2000, Microbiology.

[26]  J. Casas,et al.  Xanthan gum: production, recovery, and properties. , 2000, Biotechnology Advances.

[27]  C. Vendruscolo,et al.  Screening among 18 novel strains of Xanthomonas campestris pv pruni , 2001 .

[28]  Xanthomonas campestris pv. campestris secretes the endoglucanases ENGXCA and ENGXCB: construction of an endoglucanase-deficient mutant for industrial xanthan production , 2001, Applied Microbiology and Biotechnology.

[29]  K. Niehaus,et al.  Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core , 2001, Molecular Genetics and Genomics.

[30]  K. Niehaus,et al.  The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum , 2001, Planta.

[31]  I. Kobayashi Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. , 2001, Nucleic acids research.

[32]  E. C. Teixeira,et al.  Comparison of the genomes of two Xanthomonas pathogens with differing host specificities , 2002, Nature.

[33]  R. Sonti,et al.  Genetic Locus Encoding Functions Involved in Biosynthesis and Outer Membrane Localization of Xanthomonadin in Xanthomonas oryzae pv. oryzae , 2002, Journal of bacteriology.

[34]  Comparison of two Xanthomonas campestris pathovar campestris genomes revealed differences in their gene composition. , 2003, Journal of biotechnology.

[35]  J. M. Dow,et al.  Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E. Cascales,et al.  The versatile bacterial type IV secretion systems , 2003, Nature Reviews Microbiology.

[37]  J. M. Dow,et al.  Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. , 2003, Carbohydrate research.

[38]  J. M. Dow,et al.  Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris , 1991, Molecular and General Genetics MGG.

[39]  S. Schuster,et al.  Insights into Genome Plasticity and Pathogenicity of the Plant Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria Revealed by the Complete Genome Sequence , 2005, Journal of bacteriology.

[40]  K. Niehaus,et al.  Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. , 2005, The New phytologist.

[41]  R. Koebnik TonB-dependent trans-envelope signalling: the exception or the rule? , 2005, Trends in microbiology.

[42]  C. Landry,et al.  Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains , 2005, BMC Genomics.

[43]  C. Manceau,et al.  Structure and Origin of Xanthomonas arboricola pv. pruni Populations Causing Bacterial Spot of Stone Fruit Trees in Western Europe. , 2005, Phytopathology.

[44]  Zhijian Yao,et al.  Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. , 2005, Genome research.

[45]  J. M. Dow,et al.  The Elicitation of Plant Innate Immunity by Lipooligosaccharide of Xanthomonas campestris*[boxs] , 2005, Journal of Biological Chemistry.

[46]  Hyungtae Kim,et al.  The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice , 2005, Nucleic acids research.

[47]  R. England,et al.  Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. , 2006 .

[48]  C. Boucher,et al.  Genomic Structure and Phylogeny of the Plant Pathogen Ralstonia solanacearum Inferred from Gene Distribution Analysis , 2006, Journal of bacteriology.

[49]  Kui Lin,et al.  Xanthomonas campestris cell–cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network , 2007, Molecular microbiology.

[50]  Jing-Hui Cheng,et al.  Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris , 2007, Genome Biology.

[51]  A. Bogdanove,et al.  The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers , 2007, BMC Evolutionary Biology.

[52]  Claire Cowie,et al.  Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. , 2007, International journal of systematic and evolutionary microbiology.

[53]  D. Meyer,et al.  Plant Carbohydrate Scavenging through TonB-Dependent Receptors: A Feature Shared by Phytopathogenic and Aquatic Bacteria , 2007, PloS one.

[54]  B. Carter,et al.  A process for analysis of microarray comparative genomics hybridisation studies for bacterial genomes , 2008, BMC Genomics.

[55]  M. Scortichini,et al.  Integron variability in Xanthomonas arboricola pv. juglandis and Xanthomonas arboricola pv. pruni strains. , 2008, FEMS microbiology letters.

[56]  Alexander Goesmann,et al.  EDGAR: A software framework for the comparative analysis of prokaryotic genomes , 2009, BMC Bioinformatics.

[57]  A. Goesmann,et al.  Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11. , 2008, Journal of biotechnology.

[58]  J. Schmid,et al.  The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. , 2008, Journal of biotechnology.

[59]  J. Young,et al.  A multilocus sequence analysis of the genus Xanthomonas. , 2008, Systematic and applied microbiology.

[60]  Vladimir Pelicic Type IV pili: e pluribus unum? , 2008, Molecular microbiology.

[61]  J. M. Dow,et al.  Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A , 2008, BMC Genomics.

[62]  K. Niehaus,et al.  Identification of Xanthomonas campestris pv. campestris galactose utilization genes from transcriptome data. , 2008, Journal of biotechnology.

[63]  Andreas Tauch,et al.  EMMA 2 – A MAGE-compliant system for the collaborative analysis and integration of microarray data , 2009, BMC Bioinformatics.

[64]  U. Bonas,et al.  How Xanthomonas type III effectors manipulate the host plant. , 2009, Current opinion in microbiology.

[65]  C. D. Borges,et al.  The influence of thermal treatment and operational conditions on xanthan produced by X. arboricola pv pruni strain 106 , 2009 .

[66]  J. Gouzy,et al.  The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae , 2009, BMC Genomics.

[67]  S. Fall,et al.  Horizontal gene transfer between Ralstonia solanacearum strains detected by comparative genomic hybridization on microarrays , 2009, The ISME Journal.

[68]  M. Arlat,et al.  Identification and Regulation of the N-Acetylglucosamine Utilization Pathway of the Plant Pathogenic Bacterium Xanthomonas campestris pv. campestris , 2010, Journal of bacteriology.

[69]  A. Goesmann,et al.  CARMEN - Comparative Analysis and in silico Reconstruction of organism-specific MEtabolic Networks. , 2010, Genetics and molecular research : GMR.

[70]  L. Mayer,et al.  Aflp Analysis of Xanthomonas Axonopodis and X. Arboricola Strains Used In Xanthan Production Studies Reveal High Levels Of Polymorphism , 2010, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[71]  J. M. Dow,et al.  Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris , 2010, Proceedings of the National Academy of Sciences.

[72]  J. Setubal,et al.  Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper , 2011, BMC Genomics.

[73]  J. M. Dow,et al.  Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. , 2011, Trends in microbiology.