Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons

[1]  T. Steiner,et al.  Health-care utilization for primary headache disorders in China: a population-based door-to-door survey , 2013, The Journal of Headache and Pain.

[2]  S. Ceruti,et al.  P2Y purinergic receptors: new targets for analgesic and antimigraine drugs. , 2013, Biochemical pharmacology.

[3]  J. Olesen,et al.  Prostaglandin E2 induces immediate migraine-like attack in migraine patients without aura , 2012, The Journal of Headache and Pain.

[4]  John Gilchrist,et al.  Animal Toxins Can Alter the Function of Nav1.8 and Nav1.9 , 2012, Toxins.

[5]  T. Steiner,et al.  The Prevalence and Burden of Primary Headaches in China: A Population‐Based Door‐to‐Door Survey , 2012, Headache.

[6]  Q. Ye,et al.  Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons , 2012, Neuroscience Letters.

[7]  Xiaoyan Chen,et al.  The effects of OB-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus , 2011, Brain Research.

[8]  M. Maizels,et al.  The Use of Antidepressants for Headache Prophylaxis , 2011, CNS neuroscience & therapeutics.

[9]  Muriel Amsalem,et al.  Nav1.9 Channel Contributes to Mechanical and Heat Pain Hypersensitivity Induced by Subacute and Chronic Inflammation , 2011, PloS one.

[10]  H. Schaible,et al.  Effects of prostaglandin D2 on tetrodotoxin-resistant Na+ currents in DRG neurons of adult rat , 2011, PAIN.

[11]  U. Dirnagl,et al.  IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells , 2011, PloS one.

[12]  C. Shieh,et al.  A-887826 is a structurally novel, potent and voltage-dependent Nav1.8 sodium channel blocker that attenuates neuropathic tactile allodynia in rats , 2010, Neuropharmacology.

[13]  S. Oh,et al.  Substance P Sensitizes P2X3 in Nociceptive Trigeminal Neurons , 2010, Journal of dental research.

[14]  Q. Ye,et al.  Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons , 2010, Brain Research.

[15]  Tian-de Yang,et al.  Amitriptyline upregulates EAAT1 and EAAT2 in neuropathic pain rats , 2010, Brain Research Bulletin.

[16]  Toshihiko Shimizu [TRPV1 receptor as a therapeutical target for the treatment of migraine]. , 2009, Brain and nerve = Shinkei kenkyu no shinpo.

[17]  E. Fabbretti,et al.  Molecular Mechanisms of Sensitization of Pain-transducing P2X3 Receptors by the Migraine Mediators CGRP and NGF , 2008, Molecular Neurobiology.

[18]  I. Choi,et al.  Effects of carbamazepine and amitriptyline on tetrodotoxin-resistant Na+ channels in immature rat trigeminal ganglion neurons , 2008, Archives of pharmacal research.

[19]  Patrick Delmas,et al.  Inflammatory Mediators Increase Nav1.9 Current and Excitability in Nociceptors through a Coincident Detection Mechanism , 2008, The Journal of general physiology.

[20]  J. Wood,et al.  GTP up‐regulated persistent Na+ current and enhanced nociceptor excitability require NaV1.9 , 2008, The Journal of physiology.

[21]  T. Wong,et al.  Effects of treatments for symptoms of painful diabetic neuropathy: systematic review , 2007, BMJ : British Medical Journal.

[22]  G. Kaczorowski,et al.  Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. , 2007, The journal of pain : official journal of the American Pain Society.

[23]  S. Jung,et al.  Molecular Basis of Cav2.3 Calcium Channels in Rat Nociceptive Neurons* , 2007, Journal of Biological Chemistry.

[24]  A. M. Rush,et al.  Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons , 2007, The Journal of physiology.

[25]  D. Mohapatra,et al.  Use-Dependent Block by Lidocaine but Not Amitriptyline Is More Pronounced in Tetrodotoxin (TTX)-Resistant Nav1.8 Than in TTX-Sensitive Na+ Channels , 2007, Journal of Pharmacology and Experimental Therapeutics.

[26]  I. Chessell,et al.  The Voltage-Gated Sodium Channel Nav1.9 Is an Effector of Peripheral Inflammatory Pain Hypersensitivity , 2006, The Journal of Neuroscience.

[27]  S. Waxman,et al.  Intense Isolectin-B4 Binding in Rat Dorsal Root Ganglion Neurons Distinguishes C-Fiber Nociceptors with Broad Action Potentials and High Nav1.9 Expression , 2006, The Journal of Neuroscience.

[28]  D. Zurakowski,et al.  Doxepin by Topical Application and Intrathecal Route in Rats , 2006, Anesthesia and analgesia.

[29]  M. De Hert,et al.  Cost of disorders of the brain in Europe. , 2006, European journal of neurology.

[30]  K. Fried,et al.  Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model , 2005, Pain.

[31]  A. L. Goldin,et al.  International Union of Pharmacology. XLVIII. Nomenclature and Structure-Function Relationships of Voltage-Gated Calcium Channels , 2005, Pharmacological Reviews.

[32]  William A. Catterall,et al.  International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels , 2005, Pharmacological Reviews.

[33]  F. Coluzzi,et al.  Mechanism-based treatment in chronic neuropathic pain: the role of antidepressants. , 2005, Current pharmaceutical design.

[34]  D. Pietrobon,et al.  Migraine: New Molecular Mechanisms , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[35]  S. Kash,et al.  Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Stephen G. Waxman,et al.  PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins , 2004, Brain Research.

[37]  G. Wang,et al.  Interactions of Local Anesthetics with Voltage-gated Na+ Channels , 2004, The Journal of Membrane Biology.

[38]  G. Wang,et al.  State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain , 2004, Pain.

[39]  Patrick Delmas,et al.  Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons , 2004, Molecular and Cellular Neuroscience.

[40]  S. Tate,et al.  Heterologous expression and functional analysis of rat NaV1.8 (SNS) voltage-gated sodium channels in the dorsal root ganglion neuroblastoma cell line ND7–23 , 2004, Neuropharmacology.

[41]  S. Preskorn,et al.  Brain concentrations of tricyclic antidepressants: Single-dose kinetics and relationship to plasma concentrations in chronically dosed rats , 2004, Psychopharmacology.

[42]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[43]  L. Djouhri,et al.  The TTX‐Resistant Sodium Channel Nav1.8 (SNS/PN3): Expression and Correlation with Membrane Properties in Rat Nociceptive Primary Afferent Neurons , 2003, The Journal of physiology.

[44]  P. Gerner,et al.  Tricyclic antidepressants as long-acting local anesthetics , 2003, PAIN®.

[45]  S. Dib-Hajj,et al.  NaN/Nav1.9: a sodium channel with unique properties , 2002, Trends in Neurosciences.

[46]  S. Waxman,et al.  Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. , 2001, Journal of neurophysiology.

[47]  R. Burstein,et al.  Deconstructing migraine headache into peripheral and central sensitization , 2001, Pain.

[48]  M. Dreimann,et al.  Effect of Drugs Used for Neuropathic Pain Management on Tetrodotoxin-resistant Na+ Currents in Rat Sensory Neurons , 2001, Anesthesiology.

[49]  S. Dib-Hajj,et al.  Glial-Derived Neurotrophic Factor Upregulates Expression of Functional SNS and NaN Sodium Channels and Their Currents in Axotomized Dorsal Root Ganglion Neurons , 2000, The Journal of Neuroscience.

[50]  J. Balser,et al.  A Structural Rearrangement in the Sodium Channel Pore Linked to Slow Inactivation and Use Dependence , 2000, The Journal of general physiology.

[51]  Y. Shin,et al.  Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. , 2000, European journal of pharmacology.

[52]  C. Woolf,et al.  Diversity of Expression of the Sensory Neuron-Specific TTX-Resistant Voltage-Gated Sodium Ion Channels SNS and SNS2 , 2000, Molecular and Cellular Neuroscience.

[53]  S G Waxman,et al.  A Novel Persistent Tetrodotoxin-Resistant Sodium Current In SNS-Null And Wild-Type Small Primary Sensory Neurons , 1999, The Journal of Neuroscience.

[54]  J. Pancrazio,et al.  Inhibition of neuronal Na+ channels by antidepressant drugs. , 1998, The Journal of pharmacology and experimental therapeutics.

[55]  L. Sivilotti,et al.  A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons , 1996, Nature.

[56]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[57]  T. Cooper,et al.  Human brain fluoxetine concentrations. , 1993, The Journal of neuropsychiatry and clinical neurosciences.

[58]  T. Sumi,et al.  Amitriptyline inhibits striatal efflux of neurotransmitters via blockade of voltage-dependent Na+ channels. , 1992, European journal of pharmacology.

[59]  T. Narahashi,et al.  Differential properties of tetrodotoxin-sensitive and tetrodotoxin- resistant sodium channels in rat dorsal root ganglion neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Patrick Onghena,et al.  Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies , 1992, Pain.

[61]  C. Starmer,et al.  Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. , 1991, Circulation research.

[62]  M. Zimmermann,et al.  Ethical guidelines for investigations of experimental pain in conscious animals , 1983, Pain.

[63]  S. Papson,et al.  “Model” , 1981 .

[64]  C. Thorstrand,et al.  Cardiac effects of amitriptyline in rats. , 1976, Scandinavian journal of clinical and laboratory investigation.