Results, Old and New, in Computed Tomography

Computed tomography (CT) entails the reconstruction of a function f from line integrals of f. This mathematical problem is encountered in a growing number of diverse settings in medicine, science, and technology, ranging from the famous application in diagnostic radiology to recent research in quantum optics. As a consequence, many aspects of CT have been extensively studied and are now well understood, thus providing an interesting model case for the study of other inverse problems. Other aspects, notably three-dimensional reconstructions, still provide numerous open problems.

[1]  E. T. Quinto Tomographic reconstructions from incomplete data-numerical inversion of the exterior Radon transform , 1988 .

[2]  F. Natterer,et al.  Mathematical problems of computerized tomography , 1983, Proceedings of the IEEE.

[3]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[4]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[5]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[6]  S. Helgason The Radon Transform , 1980 .

[7]  Paul J. Thomas,et al.  Local reconstruction applied to x-ray microtomography , 1997 .

[8]  Peter Maass,et al.  Contour reconstruction in 3-D X-ray CT , 1993, IEEE Trans. Medical Imaging.

[9]  R. Lewitt Reconstruction algorithms: Transform methods , 1983, Proceedings of the IEEE.

[10]  Rolf Clackdoyle,et al.  A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection , 1994, IEEE Trans. Medical Imaging.

[11]  Andreas Rieder,et al.  Incomplete data problems in X-ray computerized tomography , 1989 .

[12]  Willehad Klaverkamp Tomographische Bildrekonstruktion mit direkten algebraischen Verfahren , 1991 .

[13]  Eric Todd Quinto,et al.  Integral Geometry and Tomography , 1990 .

[14]  Herman Kruse,et al.  Resolution of reconstruction methods in computerized tomography , 1989 .

[15]  P. Kuchment,et al.  On local tomography , 1995 .

[16]  A. Lindgren,et al.  Sampling the 2-D Radon transform , 1981 .

[17]  H. Tuy AN INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION* , 1983 .

[18]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[19]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[20]  P. Grangeat Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform , 1991 .

[21]  Laurent Desbat,et al.  Efficient sampling on coarse grids in tomography , 1993 .

[22]  D. A. Popov On convergence of a class of algorithms for the inversion of the numerical Radon transform , 1990 .

[23]  Margaret Cheney,et al.  Tomography, impedance imaging, and integral geometry : 1993 AMS-SIAM Summer Seminar on the Mathematics of Tomography, Impedance Imaging, and Integral Geometry, June 7-18, 1993, Mount Holyoke College, Massachusetts , 1994 .

[24]  F. Keinert,et al.  Inversion of k-Plane Transforms and Applications in Computer Tomog , 1989, SIAM Rev..

[25]  R. M. Perry On reconstructing a function on the exterior of a disk from its Radon transform , 1977 .

[26]  E. T. Quinto Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform , 1983 .

[27]  J. Kruskal,et al.  COMPUTERIZED TOMOGRAPHY: THE NEW MEDICAL X-RAY TECHNOLOGY , 1978 .

[28]  B. Logan The uncertainty principle in reconstructing functions from projections , 1975 .

[29]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .

[30]  E L Ritman,et al.  Computed tomographic imaging of the coronary arterial tree-use of local tomography. , 1990, IEEE transactions on medical imaging.

[31]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[32]  Alexander G. Ramm,et al.  Reconstructing singularities of a function from its Radon transform , 1993 .

[33]  D. Solmon,et al.  The X-ray transform , 1976 .

[34]  Erik L. Ritman,et al.  Local tomography , 1992 .

[35]  Carlos A. Berenstein,et al.  Local Inversion of the Radon Transform in Even Dimensions Using Wavelets , 1993 .

[36]  Alfred K. Louis Orthogonal Function Series Expansions and the Null Space of the Radon Transform , 1984 .

[37]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[38]  A M Cormack 75 Years of Radon Transform , 1992, Journal of computer assisted tomography.

[39]  Kennan T. Smith,et al.  The divergent beam x-ray transform , 1980 .

[40]  Alfred K. Louis,et al.  Medical imaging: state of the art and future development , 1992 .

[41]  Tim Olson,et al.  Wavelet localization of the Radon transform , 1994, IEEE Trans. Signal Process..

[42]  F. Natterer,et al.  Sampling in Fan Beam Tomography , 1993, SIAM J. Appl. Math..

[43]  Kennan T. Smith,et al.  Mathematical foundations of computed tomography. , 1985, Applied optics.

[44]  Alexander Katsevich,et al.  Pseudolocal Tomography , 1996, SIAM J. Appl. Math..

[45]  Gabor T. Herman,et al.  Image reconstruction from projections : implementation and applications , 1979 .

[46]  W. Ellingson,et al.  Development and Application of Local 3-D CT Reconstruction Software for Imaging Critical Regions in Large Ceramic Turbine Rotors , 1993 .

[47]  A. Cormack Sampling the radon transform with beams of finite width. , 1978 .

[48]  Alfred K. Louis,et al.  Nonuniqueness in inverse radon problems: The frequency distribution of the ghosts , 1984 .

[49]  David V. Finch CONE BEAM RECONSTRUCTION WITH SOURCES ON A CURVE , 1985 .

[50]  A M Cormack SAMPLING THE RADON TRANSFORM WITH BEAMS OF FINITE WIDTH , 1978, Physics in medicine and biology.

[51]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[52]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[53]  A. Cormack Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .

[54]  Gabor T. Herman Image Reconstruction from Projections , 1979 .

[55]  Peter Maass,et al.  The x-ray transform: singular value decomposition and resolution , 1987 .

[56]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[57]  M. L. Faingoiz,et al.  X-Ray computerized back projection tomography with filtration by double differentiation. Procedure and information features , 1985 .

[58]  Beck,et al.  Complex wave-field reconstruction using phase-space tomography. , 1994, Physical review letters.

[59]  Peter Maass,et al.  The interior Radon transform , 1992 .

[60]  B. K. Tanner Recent developments in X-ray topography , 1981 .