Spectral lens enables a minimalist framework for hyperspectral imaging

Conventional lens-based imaging techniques have long been limited to capturing only the intensity distribution of objects, resulting in the loss of other crucial dimensions such as spectral data. Here, we report a spectral lens that captures both spatial and spectral information, and further demonstrate a minimalist framework wherein hyperspectral imaging can be readily achieved by replacing lenses in standard cameras with our spectral lens. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework. Our experiments with various targets show that the resulting hyperspectral camera exhibits excellent performance in both spectral and spatial domains. With merits such as ultra-compactness and strong compatibility, our framework paves a practical pathway for advancing hyperspectral imaging apparatus toward miniaturization, with great potential for portable applications.

[1]  Qionghai Dai,et al.  Handheld snapshot multi-spectral camera at tens-of-megapixel resolution , 2023, Nature communications.

[2]  K. Tack,et al.  Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters , 2023, Nature Photonics.

[3]  Liqun Sun,et al.  Computational spectropolarimetry with a tunable liquid crystal metasurface , 2022, eLight.

[4]  Kwanpyo Kim,et al.  Miniaturized spectrometers with a tunable van der Waals junction , 2022, Science.

[5]  X. Duan,et al.  Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers , 2022, Nature Communications.

[6]  Liang Li,et al.  A Single‐Dot Perovskite Spectrometer , 2022, Advanced materials.

[7]  D. Tsai,et al.  Ultra-compact snapshot spectral light-field imaging , 2022, Nature Communications.

[8]  Shi-Jun Ge,et al.  Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures , 2022, Light, science & applications.

[9]  Xu Liu,et al.  Spectral imaging with deep learning , 2022, Light: Science & Applications.

[10]  Peng Chen,et al.  Multifunctional Liquid Crystal Device for Grayscale Pattern Display and Holography with Tunable Spectral‐Response , 2022, Laser & Photonics Reviews.

[11]  Shin‐Tson Wu,et al.  Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications , 2021, eLight.

[12]  Weidong Shen,et al.  Deeply learned broadband encoding stochastic hyperspectral imaging , 2021, Light: Science & Applications.

[13]  F. Xia,et al.  A wavelength-scale black phosphorus spectrometer , 2021, Nature Photonics.

[14]  K. Kern,et al.  Light–matter interaction at atomic scales , 2021, Nature Reviews Physics.

[15]  Chinhua Wang,et al.  Coded Liquid Crystal Metasurface for Achromatic Imaging in the Broadband Wavelength Range , 2021 .

[16]  Zongyin Yang,et al.  Miniaturization of optical spectrometers , 2021, Science.

[17]  Qingyuan Zhao,et al.  Single-Detector Spectrometer Using a Superconducting Nanowire. , 2020, Nano letters.

[18]  Andrew McClung,et al.  Snapshot spectral imaging with parallel metasystems , 2020, Science Advances.

[19]  K. Cui,et al.  Dynamic brain spectrum acquired by a real-time ultra-spectral imaging chip with reconfigurable metasurfaces , 2020, Optica.

[20]  Wei Hu,et al.  Liquid crystal integrated metalens with tunable chromatic aberration , 2020, Advanced Photonics.

[21]  B. Ren,et al.  Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy , 2020, Nature Reviews Physics.

[22]  Jiajun Meng,et al.  Detector-only spectrometer based on structurally-colored silicon nanowires and a reconstruction algorithm. , 2019, Nano letters.

[23]  Peng Chen,et al.  Liquid‐Crystal‐Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics , 2019, Advanced materials.

[24]  Limin Tong,et al.  Single-nanowire spectrometers , 2019, Science.

[25]  Xiong Dun,et al.  Compact snapshot hyperspectral imaging with diffracted rotation , 2019, ACM Trans. Graph..

[26]  Volkan Cevher,et al.  Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces , 2019, Nature Photonics.

[27]  M. Kats,et al.  Single-shot on-chip spectral sensors based on photonic crystal slabs , 2019, Nature Communications.

[28]  Adrian Stern,et al.  Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal , 2018, J. Imaging.

[29]  Adrian Stern,et al.  Multi-aperture snapshot compressive hyperspectral camera. , 2018, Optics letters.

[30]  Duk-Yong Choi,et al.  Imaging-based molecular barcoding with pixelated dielectric metasurfaces , 2018, Science.

[31]  Arka Majumdar,et al.  Metasurface optics for full-color computational imaging , 2018, Science Advances.

[32]  Shin-Tson Wu,et al.  Liquid crystal display and organic light-emitting diode display: present status and future perspectives , 2017, Light: Science & Applications.

[33]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[34]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[35]  Adrian Stern,et al.  Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder , 2016, Scientific Reports.

[36]  M. Bawendi,et al.  A colloidal quantum dot spectrometer , 2015, Nature.

[37]  T. Zentgraf,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[38]  Adrian Stern,et al.  Compressive sensing spectrometry based on liquid crystal devices. , 2013, Optics letters.

[39]  Dongrong Xu,et al.  Review of spectral imaging technology in biomedical engineering: achievements and challenges , 2013, Journal of biomedical optics.

[40]  Jun Li,et al.  Refractive indices of liquid crystals for display applications , 2005, Journal of Display Technology.

[41]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[42]  N George,et al.  Electronic imaging using a logarithmic asphere. , 2001, Optics letters.

[43]  K. Johnson,et al.  Smart spatial light modulators using liquid crystals on silicon , 1993 .

[44]  S. Ebnesajjad From Fundamentals to Applications , 2021, Introduction to Fluoropolymers.

[45]  Adrian Stern,et al.  Compressive sensing resonator spectroscopy. , 2017, Optics letters.

[46]  M. Daneel,et al.  Achievements and Challenges , 2017 .

[47]  M. Monkenbusch,et al.  Present status and future perspectives , 2010 .

[48]  Shin-Tson Wu,et al.  Fundamentals of Liquid Crystal Devices , 2006 .

[49]  Gary A. Shaw,et al.  Spectral Imaging for Remote Sensing , 2003 .