Prediction of Bacterial Contamination Outbursts in Water Wells through Sparse Coding

[1]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[2]  Zhen Jin,et al.  Pattern transitions in spatial epidemics: Mechanisms and emergent properties , 2016, Physics of Life Reviews.

[3]  Zhen Jin,et al.  Periodic solutions in a herbivore-plant system with time delay and spatial diffusion , 2016 .

[4]  Gui-Quan Sun,et al.  Mathematical modeling of population dynamics with Allee effect , 2016, Nonlinear Dynamics.

[5]  Alberto Signoroni,et al.  Bacterial colony counting by Convolutional Neural Networks , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[6]  Zhen Jin,et al.  Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak , 2015, Scientific Reports.

[7]  Avi Ostfeld,et al.  Minimum volume ellipsoid classification model for contamination event detection in water distribution systems , 2014, Environ. Model. Softw..

[8]  Shahab Araghinejad,et al.  A Comparative Assessment of Support Vector Machines, Probabilistic Neural Networks, and K-Nearest Neighbor Algorithms for Water Quality Classification , 2014, Water Resources Management.

[9]  A. E. Greenberg,et al.  Standard Methods for the Examination of Water and Wastewater seventh edition , 2013 .

[10]  G. Weedon,et al.  Time-Series Analysis and Cyclostratigraphy: Acknowledgements , 2003 .

[11]  Peter E. Larsen,et al.  Predicting bacterial community assemblages using an artificial neural network approach. , 2012, Methods in molecular biology.

[12]  Peter E. Larsen,et al.  Predicting bacterial community assemblages using an artificial neural network approach , 2012, Nature Methods.

[13]  A. Roli Artificial Neural Networks , 2012, Lecture Notes in Computer Science.

[14]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[15]  Durdu Ömer Faruk A hybrid neural network and ARIMA model for water quality time series prediction , 2010, Eng. Appl. Artif. Intell..

[16]  K. Duddleston,et al.  Variability, Seasonality, and Persistence of Fecal Coliform Bacteria in a Cold-Region, Urban Stream , 2010 .

[17]  P. Rousseeuw,et al.  Minimum volume ellipsoid , 2009 .

[18]  Eleni M. Smeti,et al.  An approach for the application of statistical process control techniques for quality improvement of treated water , 2007 .

[19]  Jarek Gryz,et al.  Algorithms and analyses for maximal vector computation , 2007, The VLDB Journal.

[20]  B. M. Dolgonosov,et al.  Model of fluctuations in bacteriological indices of water quality , 2006 .

[21]  R. Falconer,et al.  Neural Networks tor Predicting Seawater Bacterial Levels , 2005 .

[22]  E. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[23]  Tim Sandle,et al.  An approach for the reporting of microbiological results from water systems. , 2004, PDA journal of pharmaceutical science and technology.

[24]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[25]  Graham P. Weedon,et al.  Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles , 2003 .

[26]  G M Brion,et al.  Artificial neural network modelling: a summary of successful applications relative to microbial water quality. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[27]  M Hajmeer,et al.  A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. , 2002, Journal of microbiological methods.

[28]  J. Horowitz,et al.  A model of microbial contamination of a water reservoir , 2001, Bulletin of mathematical biology.

[29]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[30]  B. Hart,et al.  Use of CUSUM Methods for Water-Quality Monitoring in Storages , 1997 .

[31]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[32]  Leonid Khachiyan,et al.  On the complexity of approximating the maximal inscribed ellipsoid for a polytope , 1993, Math. Program..

[33]  J. Forrester Counterintuitive behavior of social systems , 1971 .

[34]  Gitta Kutyniok Compressed Sensing , 2012 .

[35]  L. P. IAroslavskiĭ,et al.  Digital holography and digital image processing : principles, methods, algorithms , 2010 .

[36]  Yongguang Yin,et al.  A close to real-time prediction method of total coliform bacteria in foods based on image identification technology and artificial neural network. , 2009 .

[37]  Francisco Chinesta,et al.  Circumventing Curse of Dimensionality in the Solution of Highly Multidimensional Models Encountered in Quantum Mechanics Using Meshfree Finite Sums Decomposition , 2008 .

[38]  Wanfang Zhou,et al.  Application of water quality control charts to spring monitoring in karst terranes , 2008 .

[39]  M. Peleg,et al.  Statistical analysis of the fluctuating counts of fecal bacteria in the water of Lake Kinneret. , 2004, Water research.

[40]  Ananth Ranganathan,et al.  The Levenberg-Marquardt Algorithm , 2004 .

[41]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[42]  J. Horowitz,et al.  On estimating the probability of aperiodic outbursts of microbial populations from their fluctuating counts , 2000, Bulletin of mathematical biology.

[43]  M N Hajmeer,et al.  Computational neural networks for predictive microbiology. II. Application to microbial growth. , 1997, International journal of food microbiology.

[44]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .