Highly selective Wacker oxidation of terminal olefins using magnetically recyclable Pd–Fe3O4 heterodimer nanocrystals

A new highly selective and environment-friendly Wacker oxidation process employing superparamagnetic Pd–Fe3O4 heterodimer nanocrystals in EtOH–H2O under 1 atm O2 has been developed. Consistently high yields of the desired Wacker product and excellent reaction selectivity were observed in almost all of the reactions examined. This operationally simple oxidation protocol allows recycling of the Pd–Fe3O4 catalyst after the reaction through the use of an external magnet.

[1]  J. Valyon,et al.  Wacker oxidation of ethylene over vanadia nanotube supported Pd catalysts , 2012 .

[2]  V. Bonifácio,et al.  Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. , 2012, Bioorganic & medicinal chemistry letters.

[3]  Wei Zhang,et al.  Immobilized palladium on surface-modified Fe3O4/SiO2 nanoparticles: as a magnetically separable and stable recyclable high-performance catalyst for Suzuki and Heck cross-coupling reactions , 2012 .

[4]  M. Sigman,et al.  Peroxide-Mediated Wacker Oxidations for Organic Synthesis. , 2012, Aldrichimica acta.

[5]  P. Dyson,et al.  Styrene oxidation by hydrogen peroxide in ionic liquids: the role of the solvent on the competition between two Pd-catalyzed processes, oxidation and dimerization , 2011 .

[6]  Rafael Luque,et al.  Magnetically recoverable nanocatalysts. , 2011, Chemical reviews.

[7]  Samuel Woojoo Jun,et al.  Simple one-pot synthesis of Rh-Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. , 2011, Chemical communications.

[8]  Samuel Woojoo Jun,et al.  Simple synthesis of Pd-Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. , 2011, Physical chemistry chemical physics : PCCP.

[9]  In Su Lee,et al.  Magnetically recyclable nanocatalyst systems for the organic reactions , 2011 .

[10]  O. Reiser,et al.  Efficient aerobic Wacker oxidation of styrenes using palladium bis(isonitrile) catalysts. , 2010, Chemistry.

[11]  R. Jira Acetaldehyde from ethylene--a retrospective on the discovery of the Wacker process. , 2009, Angewandte Chemie.

[12]  H. Yamashita,et al.  Synthesis and characterization of FePd magnetic nanoparticles modified with chiral BINAP ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction. , 2009, Physical chemistry chemical physics : PCCP.

[13]  R. Varma,et al.  Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number. , 2009, Organic & biomolecular chemistry.

[14]  K. Ebitani,et al.  Magnetically recoverable heterogeneous catalyst: Palladium nanocluster supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient dehalogenation with molecular hydrogen , 2007 .

[15]  Liang‐Nian He,et al.  Supercritical carbon dioxide and poly(ethylene glycol): an environmentally benign biphasic solvent system for aerobic oxidation of styrene , 2007 .

[16]  J. Jang,et al.  Magnetically separable Pd catalyst for highly selective epoxide hydrogenolysis under mild conditions. , 2007, Organic letters.

[17]  J. Jang,et al.  Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. , 2007, Chemical communications.

[18]  M. Sigman,et al.  Recent progress in Wacker oxidations: moving toward molecular oxygen as the sole oxidant. , 2007, Inorganic chemistry.

[19]  S. Manorama,et al.  Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. , 2007, Organic letters.

[20]  Yang Zhang,et al.  Palladium(II)-catalyzed enantioselective aerobic dialkoxylation of 2-propenyl phenols: a pronounced effect of copper additives on enantioselectivity. , 2007, Journal of the American Chemical Society.

[21]  M. Sigman,et al.  Discovery of a practical direct O2-coupled Wacker oxidation with Pd[(-)-sparteine]Cl2. , 2006, Organic letters.

[22]  Jung Ho Yu,et al.  Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. , 2006, Angewandte Chemie.

[23]  J. Ying,et al.  Synthesis and Applications of Magnetic Nanocomposite Catalysts , 2006 .

[24]  K. Ebitani,et al.  Highly efficient Wacker oxidation catalyzed by heterogeneous Pd montmorillonite under acid-free conditions , 2006 .

[25]  K. Ebitani,et al.  Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant. , 2006, Angewandte Chemie.

[26]  R. Grée,et al.  Wacker oxidation of terminal olefins in a mixture of [bmim][BF4] and water , 2005 .

[27]  Huanfeng Jiang,et al.  PS–BQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide , 2005 .

[28]  Jinda Fan,et al.  Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions. , 2005, Organic letters.

[29]  K. Muñiz Palladium‐Carbene Catalysts for Aerobic, Intramolecular Wacker‐Type Cyclisation Reactions , 2004 .

[30]  J. M. Takacs,et al.  The Wacker Reaction and Related Alkene Oxidation Reactions , 2003 .

[31]  K. Ebitani,et al.  Nanoscale Palladium Cluster Immobilized on a TiO2 Surface as an Efficient Catalyst for Liquid-phase Wacker Oxidation of Higher Terminal Olefins , 2003 .

[32]  Zhimin Liu,et al.  Wacker oxidation of 1-hexene in 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), supercritical (SC) CO2, and SC CO2)[bmim][PF6] mixed solvent , 2002 .

[33]  R. Varma,et al.  Selective oxidation of styrene to acetophenone in the presence of ionic liquidsPresented, in part, at the IUPAC CHEMRAWN XIV Conference on Green Chemistry:Toward Environmentally Benign Processes and Products, Boulder, Colorado, USA, 9–13 June 2001. , 2002 .

[34]  R. Neumann,et al.  Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation. , 2002, Chemical communications.

[35]  R. Sheldon,et al.  Catalytic conversions in water. Part 13. Aerobic oxidation of olefins to methyl ketones catalysed by a water-soluble palladium complex - mechanistic investigations , 2000 .

[36]  S. Sakaguchi,et al.  Wacker-type oxidation of cyclopentene under dioxygen atmosphere catalyzed by Pd(OAc)2/NPMoV on activated carbon , 2000 .

[37]  Huanfeng Jiang,et al.  Wacker reaction in supercritical carbon dioxide , 2000 .

[38]  R. Sheldon,et al.  Catalytic conversions in water. Part 10.† Aerobic oxidation of terminal olefins to methyl ketones catalysed by water soluble palladium complexes , 1998 .

[39]  M. Makkee,et al.  The performance of titania-supported Wacker catalysts in the oxidation of 1-butene , 1997 .

[40]  D. Sherrington,et al.  Wacker Oxidation of Oct-1-ene Using a Palladium(II) Complex Supported on Cyano-Functionalized Polyimide Beads , 1996 .

[41]  M. Makkee,et al.  Performance of γ-alumina-supported Wacker catalysts in the oxidation of 1-butene , 1995 .

[42]  D. Sherrington,et al.  Polymer-Supported Pd(II) Wacker-Type Catalysts II. Application in the Oxidation of Dec-1-ene , 1993 .

[43]  D. Sherrington,et al.  Polymer-supported Pd(ii) Wacker-type catalysts: 1. Synthesis and characterization of the catalysts , 1993 .

[44]  J. Scholten,et al.  Oxidation of ethylene to acetaldehyde over a heterogenized surface-vanadate Wacker catalyst in the absence of gaseous oxygen , 1992 .

[45]  H. Grennberg,et al.  Multistep electron transfer in palladium-catalyzed aerobic oxidations via a metal macrocycle-quinone system , 1990 .

[46]  J. Scholten,et al.  Kinetics and mechanism of the gas-phase oxidation of 1-butene to butanone over a new heterogenized surface vanadate Wacker catalyst , 1989 .

[47]  R. Datta,et al.  Development of a supported molten-salt Wacker catalyst for the oxidation of ethylene to acetaldehyde , 1988 .

[48]  J. Baeckvall,et al.  Biomimetic aerobic 1,4-oxidation of 1,3-dienes catalyzed by cobalt tetraphenylporphyrin-hydroquinone-palladium(II). An example of triple catalysis , 1987 .

[49]  J. Tsuji,et al.  Synthetic Applications of the Palladium-Catalyzed Oxidation of Olefins to Ketones , 1984 .

[50]  H. Ogawa,et al.  Palladium(II) Sulfate-Heteropoly Acid-catalyzed Oxidation of Cycloolefins in Liquid Phase , 1984 .

[51]  Yasuhisa Fujii,et al.  The carbon-supported palladium-vanadyl sulfate-sulfuric acid catalyst system for heterogeneous Wacker reactions , 1984 .

[52]  W. Hafner,et al.  Über die Reaktionen von Olefinen mit wäßrigen Lösungen von Palladiumsalzen , 1962 .

[53]  R. Jira,et al.  The Oxidation of Olefins with Palladium Chloride Catalysts , 1962 .

[54]  J. Smidt,et al.  Katalytische Umsetzungen von Olefinen an Platinmetall‐Verbindungen Das Consortium‐Verfahren zur Herstellung von Acetaldehyd , 1959 .