Graphene nanodevices for DNA sequencing.

Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

[1]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[2]  Henny W. Zandbergen,et al.  Atomic-Scale Electron-Beam Sculpting of Defect-Free Graphene Nanostructures , 2011, Microscopy and Microanalysis.

[3]  D. Branton,et al.  Molecule-hugging graphene nanopores , 2013, Proceedings of the National Academy of Sciences.

[4]  C. Dekker,et al.  1/f noise in graphene nanopores , 2015, Nanotechnology.

[5]  B. Nikolić,et al.  First-principles versus semi-empirical modeling of global and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing , 2014, 1408.4300.

[6]  M. Steigerwald,et al.  Building high-throughput molecular junctions using indented graphene point contacts. , 2012, Angewandte Chemie.

[7]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[8]  M. Colombini Pore size and properties of channels from mitochondria isolated fromNeurospora crassa , 1980, The Journal of Membrane Biology.

[9]  Chunhai Fan,et al.  A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis , 2010 .

[10]  Lina Zhao,et al.  Nanopore-based DNA analysis via graphene electrodes , 2012 .

[11]  J. Rehr,et al.  Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases , 2013, Nanotechnology.

[12]  Gianaurelio Cuniberti,et al.  Dynamic and electronic transport properties of DNA translocation through graphene nanopores. , 2013, Nano letters.

[13]  H. Swerdlow,et al.  A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers , 2012, BMC Genomics.

[14]  M. Ozkan,et al.  Gating of single-layer graphene with single-stranded deoxyribonucleic acids. , 2010, Small.

[15]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[16]  Klaus Schulten,et al.  Graphene quantum point contact transistor for DNA sensing , 2013, Proceedings of the National Academy of Sciences.

[17]  C. Kaun,et al.  Recognizing nucleotides by cross-tunneling currents for DNA sequencing. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Duy Le,et al.  Physisorption of nucleobases on graphene: a comparative van der Waals study , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  G. N. Sastry,et al.  Quantum Mechanical Study of Physisorption of Nucleobases on Carbon Materials: Graphene versus Carbon Nanotubes , 2011 .

[20]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Warner,et al.  Conductance enlargement in picoscale electroburnt graphene nanojunctions , 2015, Proceedings of the National Academy of Sciences.

[22]  C. Dekker,et al.  Plasmonic nanopore for electrical profiling of optical intensity landscapes. , 2013, Nano letters.

[23]  S. Murakami,et al.  Gauge Field for Edge State in Graphene , 2006, cond-mat/0602647.

[24]  O. Sankey,et al.  Recognition tunneling , 2010, Nanotechnology.

[25]  Kyeong-Beom Park,et al.  A Low-Noise Solid-State Nanopore Platform Based on a Highly Insulating Substrate , 2014, Scientific Reports.

[26]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[27]  H. Postma,et al.  Competing Interactions in DNA Assembly on Graphene , 2011, PloS one.

[28]  Riccardo Velasco,et al.  An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome , 2013, BMC Genomics.

[29]  Jun-Hyung Cho,et al.  Physisorption of DNA nucleobases on h -BN and graphene: VdW-corrected DFT calculations , 2013, 1302.7171.

[30]  A. T. Johnson,et al.  In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. , 2011, Nano letters.

[31]  W. Ansorge Next-generation DNA sequencing techniques. , 2009, New biotechnology.

[32]  P. Alkemade,et al.  Fabrication of hybrid molecular devices using multi-layer graphene break junctions , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  Grégory Pandraud,et al.  Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. , 2011, Nano letters.

[34]  X. Jia,et al.  Graphene edges: a review of their fabrication and characterization. , 2011, Nanoscale.

[35]  Z. Siwy,et al.  Making nanopores from nanotubes. , 2010, Nature nanotechnology.

[36]  Luke P. Lee,et al.  Graphene nanopore with a self-integrated optical antenna. , 2014, Nano letters.

[37]  R. Varadarajan,et al.  Binding of nucleobases with single-walled carbon nanotubes: Theory and experiment , 2007, 0709.3071.

[38]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[39]  Woo Youn Kim,et al.  The origin of dips for the graphene-based DNA sequencing device. , 2011, Physical chemistry chemical physics : PCCP.

[40]  A. Mikheyev,et al.  A first look at the Oxford Nanopore MinION sequencer , 2014, Molecular ecology resources.

[41]  L. Brey,et al.  Electronic states of graphene nanoribbons studied with the Dirac equation , 2006 .

[42]  S. Grimme,et al.  Structures and interaction energies of stacked graphene-nucleobase complexes. , 2008, Physical chemistry chemical physics : PCCP.

[43]  Dumitru Dumcenco,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[44]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Sigrist,et al.  Electronic and magnetic properties of nanographite ribbons , 1998, cond-mat/9809260.

[46]  A. M. Brett,et al.  Atomic Force Microscopy of DNA Immobilized onto a Highly Oriented Pyrolytic Graphite Electrode Surface , 2003 .

[47]  Klaus Schulten,et al.  Computational investigation of DNA detection using graphene nanopores. , 2011, ACS nano.

[48]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[49]  Yu Tao,et al.  DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets. , 2012, The Analyst.

[50]  E. Lewars Density Functional Calculations , 2011 .

[51]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[52]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[53]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[54]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[55]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[56]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[57]  R. Compton,et al.  Nanotrench arrays reveal insight into graphite electrochemistry. , 2005, Angewandte Chemie.

[58]  K. Chong,et al.  Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA , 2014 .

[59]  Kwang S. Kim,et al.  Fast DNA sequencing with a graphene-based nanochannel device. , 2011, Nature nanotechnology.

[60]  Peng Chen,et al.  Electrical Detection of DNA Hybridization with Single‐Base Specificity Using Transistors Based on CVD‐Grown Graphene Sheets , 2010, Advanced materials.

[61]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[62]  P. Wallace The Band Theory of Graphite , 1947 .

[63]  Hui Xu,et al.  Detection of nucleic acids by graphene-based devices: A first-principles study , 2014 .

[64]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[65]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[66]  Huang-Hao Yang,et al.  A graphene platform for sensing biomolecules. , 2009, Angewandte Chemie.

[67]  Rajeev Ahuja,et al.  Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. , 2010, Nano letters.

[68]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[69]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[70]  R. Ahuja,et al.  Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap , 2013 .

[71]  K. Loh,et al.  A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. , 2010, Angewandte Chemie.

[72]  Haiping Fang,et al.  Nucleobase adsorbed at graphene devices: Enhance bio-sensorics , 2012 .

[73]  Colin Nuckolls,et al.  Translocation of Single-Stranded DNA Through Single-Walled Carbon Nanotubes , 2010, Science.

[74]  Sung-Hoon Lee,et al.  Quantum interference in DNA bases probed by graphene nanoribbons , 2013 .

[75]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[76]  N. M. R. Peres,et al.  Tight-binding approach to uniaxial strain in graphene , 2008, 0811.4396.

[77]  O. Krasilnikov,et al.  A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. , 1992, FEMS microbiology immunology.

[78]  M. Drndić,et al.  DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. , 2011, Nano letters.

[79]  Qiang Xu,et al.  Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation , 2013, Nature Communications.

[80]  J. Rehr,et al.  Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases , 2014, Nanotechnology.

[81]  Henny W. Zandbergen,et al.  Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices , 2015, ACS nano.

[82]  Peiming Zhang,et al.  Slowing DNA translocation through a nanopore using a functionalized electrode. , 2013, ACS nano.

[83]  R. Ahuja,et al.  Physisorption of nucleobases on graphene : Density-functional calculations , 2007, 0704.1316.

[84]  Towfiq Ahmed,et al.  Electronic fingerprints of DNA bases on graphene. , 2012, Nano letters.

[85]  Tomoji Kawai,et al.  Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. , 2009, Nature nanotechnology.

[86]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[87]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Jin He,et al.  Identifying single bases in a DNA oligomer with electron tunnelling. , 2010, Nature nanotechnology.

[89]  M. Pumera,et al.  Graphene platform for hairpin-DNA-based impedimetric genosensing. , 2011, ACS nano.

[90]  H. Postma,et al.  Rapid sequencing of individual DNA molecules in graphene nanogaps. , 2008, Nano letters.

[91]  M. Di Ventra,et al.  Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. , 2007, Biophysical journal.

[92]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[93]  M. Taniguchi,et al.  Single-molecule sensing electrode embedded in-plane nanopore , 2011, Scientific reports.

[94]  Cees Dekker,et al.  Velocity of DNA during translocation through a solid-state nanopore. , 2015, Nano letters.

[95]  张华,et al.  A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design , 2011 .

[96]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[97]  J. Ferrer,et al.  Graphene sculpturene nanopores for DNA nucleobase sensing. , 2014, The journal of physical chemistry. B.

[98]  M. Taniguchi,et al.  Identifying single nucleotides by tunnelling current. , 2010, Nature nanotechnology.

[99]  P. Ordejón,et al.  Capacitive DNA Detection Driven by Electronic Charge Fluctuations in a Graphene Nanopore , 2015 .

[100]  Paul R. Chalker,et al.  Thermal stability of neodymium aluminates high-κ dielectric deposited by liquid injection MOCVD using single-source heterometallic alkoxide precursors , 2012 .

[101]  Motohiko Ezawa,et al.  Peculiar width dependence of the electronic properties of carbon nanoribbons , 2006, cond-mat/0602480.

[102]  R. Bashir,et al.  Slowing DNA Transport Using Graphene–DNA Interactions , 2015, Advanced functional materials.

[103]  C. Schönenberger,et al.  High-yield fabrication of nm-size gaps in monolayer CVD graphene. , 2014, Nanoscale.

[104]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[105]  Donald Sharon,et al.  A single-molecule long-read survey of the human transcriptome , 2013, Nature Biotechnology.

[106]  Benedict Paten,et al.  Improved data analysis for the MinION nanopore sequencer , 2015, Nature Methods.

[107]  Jian-Xin Zhu,et al.  Next-Generation Epigenetic Detection Technique: Identifying Methylated Cytosine Using Graphene Nanopore. , 2014, The journal of physical chemistry letters.

[108]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[109]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[110]  Fenghua Li,et al.  Biocompatible Graphene for Bioanalytical Applications , 2014 .

[111]  Qi Wang,et al.  Theoretical study on key factors in DNA sequencing with graphene nanopores , 2013 .

[112]  Shibing Long,et al.  Enhanced DNA Sequencing Performance Through Edge‐Hydrogenation of Graphene Electrodes , 2010, 1012.0031.

[113]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[114]  Cees Dekker,et al.  Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. , 2013, ACS nano.

[115]  S. Sanvito,et al.  First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes , 2011, 1109.1531.

[116]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[117]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[118]  E. Pop,et al.  Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. , 2012, ACS nano.

[119]  A. Govindaraj,et al.  Binding of DNA nucleobases and nucleosides with graphene. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[120]  A Paul Alivisatos,et al.  3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. , 2013, Nano letters.

[121]  Aleksei Aksimentiev,et al.  Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA , 2015, ACS nano.

[122]  Eric Pop,et al.  Electrochemistry at the edge of a single graphene layer in a nanopore. , 2013, ACS nano.

[123]  Cees Dekker,et al.  Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. , 2010, Journal of the American Chemical Society.

[124]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[125]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[126]  Aleksei Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[127]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[128]  A. Balan,et al.  Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. , 2013, ACS nano.

[129]  K. Saha,et al.  DNA base-specific modulation of $\mu$A transverse edge currents through a metallic graphene nanoribbon with a nanopore , 2012 .

[130]  L. Vandersypen,et al.  Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. , 2011, Nano letters.

[131]  J. Seminario,et al.  Assembly of a Noncovalent DNA Junction on Graphene Sheets and Electron Transport Characteristics , 2013 .

[132]  Cees Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[133]  L. Steinbock,et al.  The emergence of nanopores in next-generation sequencing , 2015, Nanotechnology.