Travelling in the World of Local Searches in the Space of Partial Assignments

In this paper, we report the main results of a study which has been carried out about the multiple ways of parameterising a local search in the space of the partial assignments of a Constraint Satisfaction Problem (CSP), an algorithm which is directly inspired from the decision repair algorithm [1]. After a presentation of the objectives of this study, we present the generic algorithm we started from, the various parameters that must be set to get an actual algorithm, and some potentially interesting algorithm instances. Then, we present experimental results on randomly generated, but not completely homogeneous, binary CSPs, which show that some specific parameter settings allow such a priori incomplete algorithms to solve almost all the consistent and inconsistent problem instances on the whole constrainedness spectrum. Finally, we conclude with the work that remains to do if we want to acquire a better knowledge of the best parameter settings for a local search in the space of partial assignments.

[1]  Eugene C. Freuder,et al.  Contradicting Conventional Wisdom in Constraint Satisfaction , 1994, ECAI.

[2]  Francesca Rossi,et al.  Constraint Retraction in CLP(FD): Formal Framework and Performance Results , 1999, Constraints.

[3]  Eugene C. Freuder,et al.  Understanding and Improving the MAC Algorithm , 1997, CP.

[4]  Rina Dechter,et al.  GSAT and Local Consistency , 1995, IJCAI.

[5]  Michel Gendreau,et al.  A View of Local Search in Constraint Programming , 1996, CP.

[6]  Patrice Boizumault,et al.  Maintaining Arc-Consistency within Dynamic Backtracking , 2000, CP.

[7]  Christian Bessiere,et al.  Arc-Consistency in Dynamic Constraint Satisfaction Problems , 1991, AAAI.

[8]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[9]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[10]  Romuald Debruyne,et al.  Arc-consistency in dynamic CSPs is no more prohibitive , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[11]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[12]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[13]  Paul Shaw,et al.  Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems , 1998, CP.

[14]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[15]  Andrea Schaerf,et al.  Combining Local Search and Look-Ahead for Scheduling and Constraint Satisfaction Problems , 1997, IJCAI.

[16]  Steven David Prestwich,et al.  Combining the Scalability of Local Search with the Pruning Techniques of Systematic Search , 2002, Ann. Oper. Res..

[17]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[18]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[19]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[20]  David A. McAllester,et al.  GSAT and Dynamic Backtracking , 1994, KR.

[21]  François Fages,et al.  Experiments in Reactive Constraint Logic Programming , 1998, J. Log. Program..

[22]  Hantao Zhang,et al.  Combining Local Search and Backtracking Techniques for Constraint Satisfaction , 1996, AAAI/IAAI, Vol. 1.

[23]  Christian Bliek,et al.  Generalizing Partial Order and Dynamic Backtracking , 1998, AAAI/IAAI.

[24]  Narendra Jussien,et al.  Local search with constraint propagation and conflict-based heuristics , 2000, Artif. Intell..

[25]  Bertrand Neveu,et al.  Maintaining arc consistency through constraint retraction , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[26]  P. Langley Systematic and nonsystematic search strategies , 1992 .