Finite Volume Spaces and Sparsification

We introduce and study finite $d$-volumes - the high dimensional generalization of finite metric spaces. Having developed a suitable combinatorial machinery, we define $\ell_1$-volumes and show that they contain Euclidean volumes and hypertree volumes. We show that they can approximate any $d$-volume with $O(n^d)$ multiplicative distortion. On the other hand, contrary to Bourgain's theorem for $d=1$, there exists a $2$-volume that on $n$ vertices that cannot be approximated by any $\ell_1$-volume with distortion smaller than $\tilde{\Omega}(n^{1/5})$. We further address the problem of $\ell_1$-dimension reduction in the context of $\ell_1$ volumes, and show that this phenomenon does occur, although not to the same striking degree as it does for Euclidean metrics and volumes. In particular, we show that any $\ell_1$ metric on $n$ points can be $(1+ \epsilon)$-approximated by a sum of $O(n/\epsilon^2)$ cut metrics, improving over the best previously known bound of $O(n \log n)$ due to Schechtman. In order to deal with dimension reduction, we extend the techniques and ideas introduced by Karger and Bencz{\'u}r, and Spielman et al.~in the context of graph Sparsification, and develop general methods with a wide range of applications.

[1]  Trish Groves,et al.  Cuts , 2010, BMJ : British Medical Journal.

[2]  Matthew Kahle,et al.  The fundamental group of random 2-complexes , 2007, 0711.2704.

[3]  N. Wallach,et al.  Homological connectivity of random k-dimensional complexes , 2009 .

[4]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[5]  Shang-Hua Teng,et al.  Spectral Sparsification of Graphs , 2008, SIAM J. Comput..

[6]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[7]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[8]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[9]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[10]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[11]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[12]  G. Schechtman More on embedding subspaces of $L_p$ in $l^n_r$ , 1987 .

[13]  Ojas Parekh Forestation in Hypergraphs: Linear k-Trees , 2003, Electron. J. Comb..

[14]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[15]  Oded Goldreich,et al.  On Approximating the Average Distance Between Points , 2007, APPROX-RANDOM.

[16]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[17]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[18]  Roy Meshulam,et al.  A Moore bound for simplicial complexes , 2007 .

[19]  Ron M. Adin,et al.  Counting colorful multi-dimensional trees , 1992, Comb..

[20]  SUBGRAPHS IN WHICH EACH PAIR OF EDGES LIES IN A SHORT COMMON CYCLE , 1982 .

[21]  Avner Magen,et al.  Near Optimal Dimensionality Reductions That Preserve Volumes , 2008, APPROX-RANDOM.

[22]  Jirí Matousek,et al.  Hardness of embedding simplicial complexes in Rd , 2009, SODA.

[23]  Zoltán Füredi,et al.  An exact result for 3-graphs , 1984, Discret. Math..

[24]  J. J. Seidel,et al.  A SURVEY OF TWO-GRAPHS , 1976 .

[25]  Nicholas Pippenger,et al.  Topological characteristics of random triangulated surfaces , 2006, Random Struct. Algorithms.

[26]  Nicholas Pippenger,et al.  Topological characteristics of random triangulated surfaces , 2006 .

[27]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[28]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .