Analysis of In Vitro Cytotoxicity of Carbohydrate-Based Materials Used for Dissolvable Microneedle Arrays

[1]  M. M. Pandey,et al.  Microneedles: A smart approach and increasing potential for transdermal drug delivery system. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  J. Necas,et al.  Hyaluronic acid (hyaluronan): a review , 2018 .

[3]  E. Korkmaz,et al.  Extended-release of opioids using fentanyl-based polymeric nanoparticles for enhanced pain management , 2017 .

[4]  Junying Yuan,et al.  Roles of Caspases in Necrotic Cell Death , 2016, Cell.

[5]  O. B. Ozdoganlar,et al.  Tip-Loaded Dissolvable Microneedle Arrays Effectively Deliver Polymer-Conjugated Antibody Inhibitors of Tumor-Necrosis-Factor-Alpha Into Human Skin. , 2016, Journal of pharmaceutical sciences.

[6]  Ryan F. Donnelly,et al.  Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development , 2016 .

[7]  E. Korkmaz,et al.  Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. , 2015, Acta biomaterialia.

[8]  C. Tan,et al.  Efficacy Study of Broken Rice Maltodextrin in In Vitro Wound Healing Assay , 2015, BioMed research international.

[9]  Jong Soo Lee,et al.  Comparison of cytotoxicity and wound healing effect of carboxymethylcellulose and hyaluronic acid on human corneal epithelial cells. , 2015, International journal of ophthalmology.

[10]  F. Brouns,et al.  Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins , 2015, Critical reviews in food science and nutrition.

[11]  Rebecca E. M. Lutton,et al.  Considerations in the sterile manufacture of polymeric microneedle arrays , 2015, Drug Delivery and Translational Research.

[12]  Mojca Pavlin,et al.  Comparison of Flow Cytometry, Fluorescence Microscopy and Spectrofluorometry for Analysis of Gene Electrotransfer Efficiency , 2014, The Journal of Membrane Biology.

[13]  Viness Pillay,et al.  Current advances in the fabrication of microneedles for transdermal delivery. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[14]  M. Vinardell,et al.  Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies , 2014, Nanomaterials.

[15]  S. Kundu,et al.  Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. , 2014, Journal of biomedical materials research. Part A.

[16]  Cato T. Laurencin,et al.  Polysaccharide biomaterials for drug delivery and regenerative engineering , 2014 .

[17]  P. Tchounwou,et al.  D-Glucose-Induced Cytotoxic, Genotoxic, and Apoptotic Effects on Human Breast Adenocarcinoma (MCF-7) Cells , 2014, Journal of cancer science & therapy.

[18]  M. Mena,et al.  Trehalose Reverses Cell Malfunction in Fibroblasts from Normal and Huntington's Disease Patients Caused by Proteosome Inhibition , 2014, PloS one.

[19]  Maelíosa T. C. McCrudden,et al.  Microneedles for intradermal and transdermal drug delivery. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[20]  Zhenguo Liu,et al.  Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine , 2013, Drug design, development and therapy.

[21]  Emrullah Korkmaz,et al.  Dissolvable Microneedle Arrays for Intradermal Delivery of Biologics: Fabrication and Application , 2013, Pharmaceutical Research.

[22]  P. Veranič,et al.  Analysis of cytotoxicity of melittin on adherent culture of human endothelial cells reveals advantage of fluorescence microscopy over flow cytometry and haemocytometer assay , 2013, Protoplasma.

[23]  A. Kummrow,et al.  Quantitative assessment of cell viability based on flow cytometry and microscopy , 2013, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[24]  S. Dawids Test Procedures for the Blood Compatibility of Biomaterials , 2012 .

[25]  G. Tiram,et al.  Administration, distribution, metabolism and elimination of polymer therapeutics. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[26]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[27]  C. Lan,et al.  High‐glucose environment reduces human β‐defensin‐2 expression in human keratinocytes: implications for poor diabetic wound healing , 2012, The British journal of dermatology.

[28]  Ryan F. Donnelly,et al.  Microneedle-Mediated Transdermal and Intradermal Drug Delivery: Donnelly/Microneedle-Mediated Transdermal and Intradermal Drug Delivery , 2012 .

[29]  Ryan F. Donnelly,et al.  Microneedle-mediated Transdermal and Intradermal Drug Delivery , 2012 .

[30]  K. Tam,et al.  Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. , 2012, Carbohydrate polymers.

[31]  F. Cazaux,et al.  Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. , 2011, Acta biomaterialia.

[32]  Satoshi Ohtake,et al.  Trehalose: current use and future applications. , 2011, Journal of pharmaceutical sciences.

[33]  Jason A. Burdick,et al.  Hyaluronic Acid Hydrogels for Biomedical Applications , 2011, Advanced materials.

[34]  Lina Zhang,et al.  Cellulose-based hydrogels: Present status and application prospects , 2011 .

[35]  P. Sáha,et al.  Permeability and Biocompatibility of Novel Medicated Hydrogel Wound Dressings , 2010 .

[36]  Shaoyu Lü,et al.  An injectable oxidized carboxymethylcellulose/N-succinyl-chitosan hydrogel system for protein delivery , 2010 .

[37]  S. Moreira,et al.  In Vivo Biocompatibility and Biodegradability of Dextrin-based Hydrogels , 2010 .

[38]  Ryan F. Donnelly,et al.  Microneedle Arrays Allow Lower Microbial Penetration Than Hypodermic Needles In Vitro , 2009, Pharmaceutical Research.

[39]  Alessandro Sannino,et al.  Biodegradable Cellulose-based Hydrogels: Design and Applications , 2009, Materials.

[40]  C. Wiegand,et al.  Evaluation of Biocompatibility and Cytotoxicity Using Keratinocyte and Fibroblast Cultures , 2009, Skin Pharmacology and Physiology.

[41]  C‐S. Wu,et al.  Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes , 2008, The British journal of dermatology.

[42]  Robert Langer,et al.  Transdermal drug delivery , 2008, Nature Biotechnology.

[43]  Jung-Hwan Park,et al.  Dissolving microneedles for transdermal drug delivery. , 2008, Biomaterials.

[44]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[45]  Biana Godin,et al.  Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. , 2007, Advanced drug delivery reviews.

[46]  M. Fan,et al.  Chitosan/Carboxymethyl Cellulose Polyelectrolyte Complex Scaffolds for Pulp Cells Regeneration , 2007 .

[47]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[48]  S. Elmore Apoptosis: A Review of Programmed Cell Death , 2007, Toxicologic pathology.

[49]  S. Rattan,et al.  Sugar‐Induced Premature Aging and Altered Differentiation in Human Epidermal Keratinocytes , 2007, Annals of the New York Academy of Sciences.

[50]  Robert Stern,et al.  Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications , 2006, Biotechnology Letters.

[51]  Takaya Miyano,et al.  Sugar Micro Needles as Transdermic Drug Delivery System , 2005, Biomedical microdevices.

[52]  C. Valenta,et al.  The use of polymers for dermal and transdermal delivery. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[53]  Hwal Suh,et al.  Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. , 2004, Biomaterials.

[54]  P. Chattopadhyay,et al.  Seventeen-colour flow cytometry: unravelling the immune system , 2004, Nature Reviews Immunology.

[55]  Mark R Prausnitz,et al.  Microneedles for transdermal drug delivery. , 2004, Advanced drug delivery reviews.

[56]  A. Rosenzweig,et al.  Comparison of Comet Assay, Electron Microscopy, and Flow Cytometry for Detection of Apoptosis , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[57]  A. Elbein,et al.  New insights on trehalose: a multifunctional molecule. , 2003, Glycobiology.

[58]  Michael J Akers,et al.  Excipient-drug interactions in parenteral formulations. , 2002, Journal of pharmaceutical sciences.

[59]  James N McDougal,et al.  Skin absorption and human risk assessment. , 2002, Chemico-biological interactions.

[60]  R. Duncan,et al.  Dextrins as potential carriers for drug targeting: tailored rates of dextrin degradation by introduction of pendant groups. , 2001, International journal of pharmaceutics.

[61]  D. Accili,et al.  Glucose effects on skin keratinocytes: implications for diabetes skin complications. , 2001, Diabetes.

[62]  C. Reutelingsperger,et al.  Flow cytometry of apoptotic cell death. , 2000, Journal of immunological methods.

[63]  G. Orellana,et al.  A Ruthenium Probe for Cell Viability Measurement Using Flow Cytometry, Confocal Microscopy and Time‐resolved Luminescence ¶ , 2000, Photochemistry and photobiology.

[64]  G. Orellana,et al.  A Ruthenium Probe for Cell Viability Measurement Using Flow Cytometry, Confocal Microscopy and Time-resolved Luminescence¶ , 2000 .

[65]  D. Lobner Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? , 2000, Journal of Neuroscience Methods.

[66]  Mehmet Toner,et al.  Intracellular trehalose improves the survival of cryopreserved mammalian cells , 2000, Nature Biotechnology.

[67]  K. Chiba,et al.  Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. , 1998, Toxicology in vitro : an international journal published in association with BIBRA.

[68]  S. Kain,et al.  Fluorometric and colorimetric detection of caspase activity associated with apoptosis. , 1997, Analytical biochemistry.

[69]  P. H. Petersen,et al.  Desirable standards for laboratory tests if they are to fulfill medical needs. , 1993, Clinical chemistry.

[70]  C. Colaco,et al.  Extraordinary Stability of Enzymes Dried in Trehalose: Simplified Molecular Biology , 1992, Bio/Technology.

[71]  A. Almasan,et al.  Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. , 2015, Methods in molecular biology.

[72]  D. Barrow,et al.  Structural characterisation and transdermal delivery studies on sugar microneedles: experimental and finite element modelling analyses. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[73]  Richard F. Wallin,et al.  A Practical Guide to ISO 10993-5: Cytotoxicity , 2015 .

[74]  M. Stoddart Cell viability assays: introduction. , 2011, Methods in molecular biology.

[75]  Donald Wlodkowic,et al.  Apoptosis and beyond: cytometry in studies of programmed cell death. , 2011, Methods in cell biology.

[76]  E. Wardle Programmed Cell Death: Apoptosis , 2009 .

[77]  A. Almasan,et al.  Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. , 2008, Methods in molecular biology.

[78]  B. Hissong,et al.  Comparison of multiple assays for kinetic detection of apoptosis in thymocytes exposed to dexamethasone or diethylstilbesterol. , 1999, Cytometry.

[79]  G. Majno,et al.  Apoptosis, oncosis, and necrosis. An overview of cell death. , 1995, The American journal of pathology.

[80]  Y Noishiki,et al.  Tissue biocompatibility of cellulose and its derivatives. , 1989, Journal of biomedical materials research.