Guaranteed error bounds in homogenisation: an optimum stochastic approach to preserve the numerical separation of scales
暂无分享,去创建一个
Stéphane Bordas | J. P. Moitinho de Almeida | Pierre Kerfriden | Daniel Alves Paladim | P. Kerfriden | J. P. Moitinho de Almeida | S. Bordas | D. Paladim
[1] J. Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .
[2] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[3] S. Nemat-Nasser,et al. Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .
[4] J. P. Moitinho de Almeida,et al. Alternative approach to the formulation of hybrid equilibrium finite elements , 1991 .
[5] P. Wriggers,et al. On the optimality of the window method in computational homogenization , 2013 .
[6] Wing Kam Liu,et al. Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory , 2011 .
[7] K. Tanaka,et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .
[8] Sanjay R. Arwade,et al. Variability response functions for effective material properties , 2011 .
[9] J. Tinsley Oden,et al. Investigation of the interactions between the numerical and the modeling errors in the Homogenized Dirichlet Projection Method , 1998 .
[10] Pedro Díez,et al. Error Estimation and Quality Control , 2010 .
[11] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[12] I. Babuska,et al. Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .
[13] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[14] H. Matthies. Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .
[15] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[16] Pierre Ladevèze,et al. Verification of stochastic models in uncertain environments using the constitutive relation error method , 2006 .
[17] Kumar Vemaganti,et al. Hierarchical modeling of heterogeneous solids , 2006 .
[18] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[19] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .
[20] Pedro Díez,et al. Verifying Calculations - Forty Years On: An Overview of Classical Verification Techniques for FEM Simulations , 2015 .
[21] Pierre Kerfriden,et al. Scale selection in nonlinear fracture mechanics of heterogeneous materials , 2015 .
[22] E. Stein,et al. Finite Element Methods for Elasticity with Error‐controlled Discretization and Model Adaptivity , 2007 .
[23] F. F. Ling,et al. Mastering Calculations in Linear and Nonlinear Mechanics , 2005 .
[24] E. Sanchez-Palencia,et al. Homogenization Techniques for Composite Media , 1987 .
[25] Assyr Abdulle,et al. Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .
[26] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[27] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[28] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[29] J. Oden,et al. Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .
[30] Fredrik Larsson,et al. On two-scale adaptive FE analysis of micro-heterogeneous media with seamless scale-bridging , 2011 .
[31] O. C. Zienkiewicz. Displacement and equilibrium models in the finite element method by B. Fraeijs de Veubeke, Chapter 9, Pages 145–197 of Stress Analysis, Edited by O. C. Zienkiewicz and G. S. Holister, Published by John Wiley & Sons, 1965 , 2001 .
[32] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[33] Amy Henderson Squilacote. The Paraview Guide , 2008 .
[34] P. Wriggers,et al. Error controlled adaptive multiscale XFEM simulation of cracks , 2012, International Journal of Fracture.
[35] J. Tinsley Oden,et al. Hierarchical modeling of heterogeneous solids , 1996 .
[36] Somnath Ghosh,et al. Concurrent multi-scale analysis of elastic composites by a multi-level computational model , 2004 .
[37] J. Tinsley Oden,et al. Multi-scale goal-oriented adaptive modeling of random heterogeneous materials , 2006 .
[38] J. Tinsley Oden,et al. Estimation of modeling error in computational mechanics , 2002 .
[39] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .