Capillary K+-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow

[1]  Maiken Nedergaard,et al.  Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation , 2016, Neuron.

[2]  A. Bonev,et al.  Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators , 2016, The Journal of physiology.

[3]  Vishnu B. Sridhar,et al.  Cell type specificity of neurovascular coupling in cerebral cortex , 2016, eLife.

[4]  G. Holmes,et al.  Temporal Coordination of Hippocampal Neurons Reflects Cognitive Outcome Post-febrile Status Epilepticus☆☆☆ , 2016, EBioMedicine.

[5]  M. Nelson,et al.  The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction , 2015, Proceedings of the National Academy of Sciences.

[6]  Martin Lauritzen,et al.  Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. , 2015, Physiological reviews.

[7]  Kazuto Masamoto,et al.  Unveiling astrocytic control of cerebral blood flow with optogenetics , 2015, Scientific Reports.

[8]  M. Nelson,et al.  Vascular Inward Rectifier K+ Channels as External K+ Sensors in the Control of Cerebral Blood Flow , 2015, Microcirculation.

[9]  Lisa J. Mellander,et al.  Robust and Fragile Aspects of Cortical Blood Flow in Relation to the Underlying Angioarchitecture , 2015, Microcirculation.

[10]  A. Bonev,et al.  Potassium channelopathy-like defect underlies early-stage cerebrovascular dysfunction in a genetic model of small vessel disease , 2015, Proceedings of the National Academy of Sciences.

[11]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[12]  Matthew B. Bouchard,et al.  A Critical Role for the Vascular Endothelium in Functional Neurovascular Coupling in the Brain , 2014, Journal of the American Heart Association.

[13]  D. Attwell,et al.  Capillary pericytes regulate cerebral blood flow in health and disease , 2014, Nature.

[14]  D. Kleinfeld,et al.  The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow , 2013, Nature Neuroscience.

[15]  Edith Hamel,et al.  Locus Coeruleus Stimulation Recruits a Broad Cortical Neuronal Network and Increases Cortical Perfusion , 2013, The Journal of Neuroscience.

[16]  M. Nelson,et al.  Prostaglandin E2, a Postulated Astrocyte-Derived Neurovascular Coupling Agent, Constricts Rather than Dilates Parenchymal Arterioles , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  Lucía Prensa,et al.  Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex , 2012, PloS one.

[18]  S. Segal,et al.  Function and expression of ryanodine receptors and inositol 1,4,5‐trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles , 2012, The Journal of physiology.

[19]  Francesco Vetri,et al.  Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BK(Ca) and Kir channels. , 2012, American journal of physiology. Heart and circulatory physiology.

[20]  M. Nelson,et al.  Acidosis Dilates Brain Parenchymal Arterioles by Conversion of Calcium Waves to Sparks to Activate BK Channels , 2012, Circulation research.

[21]  D. Puro,et al.  The electrotonic architecture of the retinal microvasculature: modulation by angiotensin II , 2011, The Journal of physiology.

[22]  A. Bonev,et al.  Endothelial SKCa and IKCa Channels Regulate Brain Parenchymal Arteriolar Diameter and Cortical Cerebral Blood Flow , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  M. Nelson,et al.  Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. , 2011, American journal of physiology. Heart and circulatory physiology.

[24]  D. Attwell,et al.  Glial and neuronal control of brain blood flow , 2022 .

[25]  R. Aldrich,et al.  Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction , 2010, Proceedings of the National Academy of Sciences.

[26]  Ulrich Dirnagl,et al.  Pharmacological Uncoupling of Activation Induced Increases in CBF and CMRO2 , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  Kazuharu Furutani,et al.  Inwardly rectifying potassium channels: their structure, function, and physiological roles. , 2010, Physiological reviews.

[28]  D. Kleinfeld,et al.  Correlations of Neuronal and Microvascular Densities in Murine Cortex Revealed by Direct Counting and Colocalization of Nuclei and Vessels , 2009, The Journal of Neuroscience.

[29]  B. Duling,et al.  Gap junctions in the control of vascular function. , 2009, Antioxidants & redox signaling.

[30]  Jack W. Tsao,et al.  Observed brain dynamics, P.P. Mitra, H. Bokil. Oxford University Press (2008), ISBN-13: 978-0-19-517808-1, 381 pages, $65.00 , 2009 .

[31]  Mark S Taylor,et al.  Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections , 2008, Proceedings of the National Academy of Sciences.

[32]  C. Iadecola,et al.  Glial regulation of the cerebral microvasculature , 2007, Nature Neuroscience.

[33]  David Kleinfeld,et al.  Penetrating arterioles are a bottleneck in the perfusion of neocortex , 2007, Proceedings of the National Academy of Sciences.

[34]  R. Aldrich,et al.  Local potassium signaling couples neuronal activity to vasodilation in the brain , 2006, Nature Neuroscience.

[35]  D. Puro,et al.  Electrotonic Transmission Within Pericyte‐Containing Retinal Microvessels , 2006, Microcirculation.

[36]  D. Puro,et al.  Topographical heterogeneity of KIR currents in pericyte‐containing microvessels of the rat retina: effect of diabetes , 2006, The Journal of physiology.

[37]  M. Nelson,et al.  Calcium-activated potassium channels and the regulation of vascular tone. , 2006, Physiology.

[38]  J. Rossier,et al.  Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways , 2004, The Journal of Neuroscience.

[39]  P. Christophersen,et al.  Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). , 2004, Biochimica et biophysica acta.

[40]  T. Takano,et al.  Signaling at the Gliovascular Interface , 2003, The Journal of Neuroscience.

[41]  Mark T. Nelson,et al.  Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. , 2000, Circulation research.

[42]  J. Beach,et al.  Capillaries and arterioles are electrically coupled in hamster cheek pouch. , 1998, American journal of physiology. Heart and circulatory physiology.

[43]  N. Standen,et al.  ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. , 1997, Physiological reviews.

[44]  K. Ballanyi,et al.  Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion. , 1996, The Journal of physiology.

[45]  M. Nelson,et al.  Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. , 1996, The Journal of physiology.

[46]  N. Standen,et al.  The Role of the Membrane Potential of Endothelial and Smooth Muscle Cells in the Regulation of Coronary Blood Flow , 1994, Journal of cardiovascular electrophysiology.

[47]  M. Nelson,et al.  Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries. , 1993, The American journal of physiology.

[48]  J. Povlishock,et al.  Myoendothelial Junctions in Human Brain Arterioles , 1991, Stroke.

[49]  J B Patlak,et al.  Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. , 1990, The American journal of physiology.

[50]  W. Kuschinsky,et al.  Perivascular Potassium and pH as Determinants of Local Pial Arterial Diameter in Cats: A MICROAPPLICATION STUDY , 1972, Circulation research.