Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits

Toaidinthephysicalinterpretationofplanetaryradii constrainedthroughobservationsoftransitingplanets,oreventuallydirectdetections,wecomputemodelradiiofpurehydrogen-helium,water,rock,andironplanets,alongwithvarious mixtures. Masses ranging from 0.01 Earth masses to 10 Jupiter masses at orbital distances of 0.02–10 AU are considered. For hydrogen-helium rich planets, our models are the first to couple planetary evolution to stellar irradiation over a wide range of orbital separations (0.02–10 AU) through a nongray radiative-convective equilibrium atmosphere model. Stellar irradiation retards the contraction of giant planets, but its effect is not a simple function of theirradiationlevel:aplanetat1AUcontractsasslowlyasaplanetat0.1AU.WeconfirmtheassertionofGuillotthat very old giant planets under modest stellar irradiation (like that received by Jupiter and Saturn) develop isothermal atmospheric radiative zones once the planet’s intrinsic flux drops to a small fraction of the incident flux. For hydrogenhelium planets, we consider cores up to 90% of the total planet mass, comparable to those of Uranus and Neptune. If ‘‘hot Neptunes’’ have maintained their original masses and are not remnants of more massive planets, radii of � 0.30– 0.45RJ areexpected.Waterplanetsare � 40%–50%largerthanrockyplanets,independentofmass.Finally,weprovide tables of planetary radii at various ages and compositions, and for ice-rock-iron planets we fit our results to analytic functions, which will allow for quick composition estimates, given masses and radii, or mass estimates, given only planetary radii. These results will assist in the interpretation of observations for both the current transiting planet surveys as well as upcoming space missions, including COROT and Kepler.

[1]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[2]  David Charbonneau,et al.  Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD?209458 , 2001 .

[3]  J. Fortney,et al.  Effects of helium phase separation on the evolution of extrasolar giant planets , 2003, astro-ph/0402620.

[4]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[5]  S. Seager,et al.  Constraining the Rotation Rate of Transiting Extrasolar Planets by Oblateness Measurements , 2002, astro-ph/0204225.

[6]  Debra A. Fischer,et al.  A Comparison of Observationally Determined Radii with Theoretical Radius Predictions for Short-Period Transiting Extrasolar Planets , 2005 .

[7]  D. O. Astronomy,et al.  Effects of mass loss for highly-irradiated giant planets , 2005, astro-ph/0508591.

[8]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[9]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[10]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[11]  I. Baraffe,et al.  Theory of Low-Mass Stars and Substellar Objects , 2000 .

[12]  Chemistry of Low Mass Substellar Objects , 2006, astro-ph/0601381.

[13]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[14]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[15]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[16]  D. Rouan,et al.  Exoplanet detection capability of the COROT space mission , 2003 .

[17]  D. Saumon,et al.  The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs , 1992 .

[18]  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[19]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[20]  Tristan Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001 .

[21]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[22]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[23]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[24]  G. Laughlin,et al.  On the Radii of Extrasolar Giant Planets , 2003 .

[25]  David Charbonneau,et al.  PRECISE RADIUS ESTIMATES FOR THE EXOPLANETS WASP-1b AND WASP-2b , 2007 .

[26]  E. Salpeter,et al.  The mass-radius relation for cold spheres of low mass , 1969 .

[27]  A. Burrows,et al.  THEORETICAL RADII OF TRANSITING GIANT PLANETS: THE CASE OF OGLE-TR-56b , 2004, astro-ph/0405264.

[28]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[29]  W. Hubbard,et al.  Interior Structure of Neptune: Comparison with Uranus , 1991, Science.

[30]  On the Origin of HD 149026b , 2006, astro-ph/0607212.

[31]  L. Bildsten,et al.  Thermal Structure and Radius Evolution of Irradiated Gas Giant Planets , 2006, astro-ph/0601317.

[32]  S. L. Thompson ANEOS analytic equations of state for shock physics codes input manual , 1990 .

[33]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[34]  H. F. Astrophysics,et al.  Internal structure of massive terrestrial planets , 2005, astro-ph/0511150.

[35]  MEASURING THE OBLATENESS AND ROTATION OF TRANSITING EXTRASOLAR GIANT PLANETS , 2003, astro-ph/0301156.

[36]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[37]  M. Kuchner Volatile-rich Earth-Mass Planets in the Habitable Zone , 2003, astro-ph/0303186.

[38]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[39]  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.

[40]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[41]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[42]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[43]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[44]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[45]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[46]  W. Hubbard The Jovian surface condition and cooling rate , 1977 .

[47]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[48]  On the Possible Properties of Small and Cold Extrasolar Planets: Is OGLE 2005-BLG-390Lb Entirely Frozen? , 2006, astro-ph/0607219.

[49]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[50]  L. Hebb,et al.  WASP-1b and WASP-2b: Two new transiting exoplanets detected with SuperWASP and SOPHIE , 2006, astro-ph/0609688.

[51]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[52]  Carnegie,et al.  HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary* ** , 2007 .

[53]  P. H. Hauschildt,et al.  Hot-Jupiters and hot-Neptunes: A common origin? , 2005 .

[54]  Mark S. Marley,et al.  Erratum: ``Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits'' ( ApJ, 659, 1661 [2007] ) , 2007 .

[55]  D. Stevenson Formation of the giant planets , 1982 .

[56]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[57]  William J. Borucki,et al.  The Kepler Mission: A wide-field transit search for terrestrial planets , 2005 .

[58]  Marley,et al.  On the Radii of Close-in Giant Planets , 2000, The Astrophysical journal.

[59]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[60]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[61]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[62]  W. Benz,et al.  Birth and fate of hot-Neptune planets , 2005, astro-ph/0512091.

[63]  William B. Hubbard,et al.  Theory of Giant Planets , 2002 .

[64]  Phase separation in giant planets: inhomogeneous evolution of Saturn , 2003, astro-ph/0305031.

[65]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[66]  M. Marley,et al.  Comparative models of Uranus and Neptune , 1995 .

[67]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[68]  M. Marley,et al.  Retrieval of water in Jupiter's deep atmosphere using microwave spectra of its brightness temperature , 2005 .

[69]  W. Hubbard,et al.  Structure and evolution of Uranus and Neptune , 1980 .

[70]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.