Electrochemical performance of La1.6Sr0.4NiO4–Ag composite cathodes for intermediate-temperature solid oxide fuel cells

[1]  Masashi Mori,et al.  Development of Micro-Tubular SOFCs with an Improved Performance via Nano-Ag Impregnation for Intermediate Temperature Operation , 2007, ECS Transactions.

[2]  Zongping Shao,et al.  Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathodes for a proton conducting solid-oxide fuel cell , 2010 .

[3]  T. Terai,et al.  LSCF―Ag Cermet Cathode for Intermediate Temperature Solid Oxide Fuel Cells , 2009 .

[4]  Zongping Shao,et al.  Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrode prepared by electroless deposition technique , 2009 .

[5]  N. Imanishi,et al.  Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells , 2008 .

[6]  Zongping Shao,et al.  Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition , 2008 .

[7]  S. Simner,et al.  Performance of a Novel La(Sr)Fe(Co)O3-Ag SOFC Cathode , 2006 .

[8]  A. Manthiram,et al.  Electrochemical performance of Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag composite cathodes in intermediate temperature solid oxide fuel cells , 2006 .

[9]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[10]  V. Birss,et al.  A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes , 2005 .

[11]  Harry Abernathy,et al.  GDC-Based Low-Temperature SOFCs Powered by Hydrocarbon Fuels , 2004 .

[12]  F. Tietz,et al.  Silver incorporation into cathodes for solid oxide fuel cells operating at intermediate temperature , 2004 .

[13]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[14]  Meilin Liu,et al.  Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells , 2003 .

[15]  F. Tietz,et al.  Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion , 2003 .

[16]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[17]  J. Kilner,et al.  Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ , 2000 .

[18]  H. Ullmann,et al.  Oxygen nonstoichiometry and some transport properties of LaSrNiO4−δ nickelate , 2000 .

[19]  John A. Kilner,et al.  Optimisation of composite cathodes for intermediate temperature SOFC applications , 1999 .

[20]  Wenzhao Li,et al.  Promoting effect of YSZ on the electrochemical performance of YSZ+LSM composite electrodes , 1998 .

[21]  J. Kilner,et al.  Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3 cathodes , 1998 .

[22]  A. Hammouche,et al.  Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .

[23]  H. Uchida,et al.  High Performance Catalyzed‐Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells , 1994 .

[24]  Gregory J. Exarhos,et al.  Glycine-nitrate combustion synthesis of oxide ceramic powders , 1990 .

[25]  John T. S. Irvine,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[26]  Y. Takeda,et al.  Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .