Unlabelled Gibbs partitions

We study random composite structures considered up to symmetry that are sampled according to weights on the inner and outer structures. This model may be viewed as an unlabelled version of Gibbs partitions and encompasses multisets of weighted combinatorial objects. We describe a general setting characterized by the formation of a giant component. The collection of small fragments is shown toconverge in total variation toward a limit object following a P\'olya-Boltzmann distribution.

[1]  Michael M. Erlihson,et al.  Limit shapes of Gibbs distributions on the set of integer partitions: The expansive case , 2008 .

[2]  Colin McDiarmid,et al.  Random Graphs from a Minor-Closed Class , 2009, Combinatorics, Probability and Computing.

[3]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[4]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[5]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[6]  P. Flajolet,et al.  Boltzmann Sampling of Unlabelled Structures , 2006 .

[7]  Andrew D. Barbour,et al.  Random combinatorial structures: the convergent case , 2005, J. Comb. Theory, Ser. A.

[8]  Colin McDiarmid,et al.  Random graphs on surfaces , 2008, J. Comb. Theory, Ser. B.

[9]  P. Ney,et al.  Functions of probability measures , 1973 .

[10]  Benedikt Stufler,et al.  Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.

[11]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[12]  Edward A. Bender,et al.  Asymptotics for the Probability of Connectedness and the Distribution of Number of Components , 2000, Electron. J. Comb..

[13]  Ljuben Mutafchiev The largest tree in certain models of random forests , 1998 .

[14]  P. Embrechts,et al.  FUNCTIONS OF POWER SERIES , 1984 .

[15]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[16]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[17]  Benedikt Stufler,et al.  Asymptotic Properties of Random Unlabelled Block-Weighted Graphs , 2017, Electron. J. Comb..

[18]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[19]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .