Implementation of Building Reconstruction Algorithm Using Real World LIDAR Data

An increasing use of three dimensional point clouds for building reconstruction is being driven by the popularity of Airborne Laser Scanning (ALS). Laser scanning data provides rapid and accurate elevation models of buildings, forest and terrain surface. Though the captured data contains X, Y, and Z coordinates, the data volume is huge and does not provide any building information. The challenge is to covert the point clouds into CAD-type models containing vertical walls, roof planes and terrain which can be rapidly displayed from any 3D viewpoint. An alternative method was developed to locate building blocks and identify the roof structures with the use of the Delaunay Triangulation and its dual Voronoi diagram and simulated data was used to illustrate the algorithm. This paper shows the implementation of the method using real world ALS data.