Supersaturation Control in Cooling Polymorphic Co-Crystallization of Caffeine and Glutaric Acid

A model polymorphic co-crystallization process for caffeine-glutaric acid from acetonitrile was monitored and controlled using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and particle vision measurement (PVM). A new method to calculate supersaturation for co-crystallization systems was proposed and used in this study. Results showed that feedback control of supersaturation was effective in eliminating the nucleation of the metastable Form I of co-crystal and also produced the largest particles with the lowest proportion of fines.

[1]  Wolfgang Beckmann,et al.  Seeding the Desired Polymorph: Background, Possibilities, Limitations, and Case Studies , 2000 .

[2]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[3]  K. Roberts,et al.  In-Process ATR-FTIR Spectroscopy for Closed-Loop Supersaturation Control of a Batch Crystallizer Producing Monosodium Glutamate Crystals of Defined Size , 2003 .

[4]  William Jones,et al.  Solvent-drop grinding: green polymorph control of cocrystallisation. , 2004, Chemical communications.

[5]  Richard D. Braatz,et al.  First-principles and direct design approaches for the control of pharmaceutical crystallization , 2005 .

[6]  Lynne S. Taylor,et al.  Crystallization monitoring by Raman spectroscopy: Simultaneous measurement of desupersaturation profile and polymorphic form in flufenamic acid systems , 2005 .

[7]  Process design and scale-up elements for solvent mediated polymorphic controlled tecastemizole crystallization , 2005 .

[8]  William Jones,et al.  Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration , 2005 .

[9]  Debasis Sarkar,et al.  Multi-objective optimization of seeded batch crystallization processes , 2006 .

[10]  Reginald B. H. Tan,et al.  Seeding and constant-supersaturation control by ATR-FTIR in anti-solvent crystallization , 2006 .

[11]  Sarah J. Nehm,et al.  Reaction crystallization of pharmaceutical molecular complexes. , 2006, Molecular pharmaceutics.

[12]  M. Mitchell,et al.  Polymorph and Particle Size Control of PPAR Compounds PF00287586 and AG035029 , 2006 .

[13]  M. Mazzotti,et al.  In Situ Monitoring and Modeling of the Solvent-Mediated Polymorphic Transformation of l-Glutamic Acid , 2006 .

[14]  R. Tan,et al.  Application of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) technique in the monitoring and control of anti-solvent crystallization , 2006 .

[15]  Sarah J. Nehm,et al.  Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation , 2006 .

[16]  Orn Almarsson,et al.  Performance comparison of a co-crystal of carbamazepine with marketed product. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  Reginald B. H. Tan,et al.  Recent Advances in Crystallization control: An Industrial Perspective , 2007 .

[18]  Gilles Fevotte,et al.  A population balance model of the solution-mediated phase transition of citric acid , 2007 .

[19]  R. Davey,et al.  Making Co-crystals-The utility of ternary phase diagrams , 2007 .

[20]  A. Gavezzotti,et al.  Polymorphic Perversity: Crystal Structures with Many Symmetry-Independent Molecules in the Unit Cell † , 2008 .

[21]  Ahmad Y. Sheikh,et al.  Scalable solution cocrystallization: case of carbamazepine-nicotinamide I , 2009 .

[22]  Keith Chadwick,et al.  The utility of a ternary phase diagram in the discovery of new co-crystal forms , 2009 .

[23]  F. Puel,et al.  Cocrystal Formation in Solution: In Situ Solute Concentration Monitoring of the Two Components and Kinetic Pathways , 2009 .

[24]  Julian Morris,et al.  On-line monitoring of batch cooling crystallization of organic compounds using ATR-FTIR spectroscopy coupled with an advanced calibration method , 2009 .

[25]  Pui Shan Chow,et al.  Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs , 2009 .

[26]  Naír Rodríguez-Hornedo,et al.  Solubility Advantage of Pharmaceutical Cocrystals , 2009 .

[27]  R. Tan,et al.  Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile , 2010 .

[28]  E. Hæggström,et al.  Closed‐Loop Control of Reactive Crystallization PART II: Polymorphism Control of L‐Glutamic Acid by Sonocrystallization and Seeding , 2010 .

[29]  J. H. T. Horst,et al.  Co-crystallization as a separation technology: controlling product concentrations by co-crystals , 2010 .

[30]  Zoltan K. Nagy,et al.  Optimal seed recipe design for crystal size distribution control for batch cooling crystallisation processes , 2010 .

[31]  A. Matzger,et al.  Cocrystal Engineering of a Prototype Energetic Material: Supramolecular Chemistry of 2,4,6-Trinitrotoluene , 2010 .

[32]  William Jones,et al.  Benefits of cocrystallisation in pharmaceutical materials science: an update , 2010, The Journal of pharmacy and pharmacology.

[33]  B. Glennon,et al.  Supersaturation tracking for the development, optimization and control of crystallization processes , 2010 .

[34]  Peter York,et al.  Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[35]  R. Tan,et al.  Implementation of Focused Beam Reflectance Measurement (FBRM) in Antisolvent Crystallization to Achieve Consistent Product Quality , 2010 .

[36]  Amjad Alhalaweh,et al.  Bioavailability of indomethacin‐saccharin cocrystals , 2010, The Journal of pharmacy and pharmacology.

[37]  R. Tamura,et al.  Observation of Efficient Preferential Enrichment Phenomenon for a Cocrystal of (DL)-Phenylalanine and Fumaric Acid under Nonequilibrium Crystallization Conditions , 2011 .