High-throughput three-dimensional protein structure determination.

In the wake of finished genomic sequencing projects, high-throughput analysis techniques are being developed in various fields of functional genomics. Of special interest in this regard is the three-dimensional structure analysis of proteins by X-ray crystallography and NMR spectroscopy, which has been characterized by distinctly low-throughput in the past. A number of recent advances in instrumentation and software are promising to radically change this situation, leaving the production of suitable protein samples as the sole rate-limiting step in structural analyses.

[1]  Y. Muller,et al.  Folding screening assayed by proteolysis: application to various cystine deletion mutants of vascular endothelial growth factor. , 2001, Protein engineering.

[2]  A Wlodawer,et al.  Practical experience with the use of halides for phasing macromolecular structures: a powerful tool for structural genomics. , 2001, Acta crystallographica. Section D, Biological crystallography.

[3]  Yutaka Kuroda,et al.  Structural genomics projects in Japan , 2000, Nature Structural Biology.

[4]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[5]  H. Eickhoff,et al.  Development of a technology for automation and miniaturization of protein crystallization. , 2001, Journal of biotechnology.

[6]  W G Hol,et al.  A database method for automated map interpretation in protein crystallography , 1999, Proteins.

[7]  T. Terwilliger,et al.  Rapid protein-folding assay using green fluorescent protein , 1999, Nature Biotechnology.

[8]  R. Gentz,et al.  Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent , 1988, Bio/Technology.

[9]  G N Murshudov,et al.  Validation tools: can they indicate the information content of macromolecular crystal structures? , 1998, Structure.

[10]  R W Grosse-Kunstleve,et al.  A highly automated heavy-atom search procedure for macromolecular structures. , 1999, Acta crystallographica. Section D, Biological crystallography.

[11]  Shirley M. Tilghman,et al.  Exploring genome space , 2000, Nature.

[12]  R Miller,et al.  Optimizing Shake-and-Bake for proteins. , 1999, Acta crystallographica. Section D, Biological crystallography.

[13]  H Oschkinat,et al.  Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. , 1997, Journal of molecular biology.

[14]  M. Billeter,et al.  Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. , 1998, Journal of magnetic resonance.

[15]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[16]  C R Kissinger,et al.  Rapid automated molecular replacement by evolutionary search. , 1999, Acta crystallographica. Section D, Biological crystallography.

[17]  George M Sheldrick,et al.  [37] Patterson superposition and ab initio phasing. , 1997, Methods in enzymology.

[18]  A. Sali,et al.  Structural genomics: beyond the Human Genome Project , 1999, Nature Genetics.

[19]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[20]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[21]  Thomas Earnest,et al.  Automation of X-ray crystallography , 2000, Nature Structural Biology.

[22]  A. Skerra,et al.  One-step affinity purification of bacterially produced proteins by means of the "Strep tag" and immobilized recombinant core streptavidin. , 1994, Journal of chromatography. A.

[23]  W G Hol,et al.  Difference density quality (DDQ): a method to assess the global and local correctness of macromolecular crystal structures. , 1999, Acta crystallographica. Section D, Biological crystallography.

[24]  Howard A. Padmore,et al.  The Macromolecular Crystallography Facility at the Advanced Light Source , 1995 .

[25]  H N Moseley,et al.  Automated analysis of NMR assignments and structures for proteins. , 1999, Current opinion in structural biology.

[26]  Wayne A Hendrickson,et al.  [28] Phase determination from multiwavelength anomalous diffraction measurements. , 1997, Methods in enzymology.

[27]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[28]  W. Braun,et al.  Automatic assignment of NOESY cross peaks and determination of the protein structure of a new world scorpion neurotoxin using NOAH/DIAMOD. , 2001, Journal of magnetic resonance.

[29]  K D Cowtan,et al.  Density modification for macromolecular phase improvement. , 1999, Progress in biophysics and molecular biology.

[30]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[31]  Jens Meiler,et al.  DipoCoup: A versatile program for 3D-structure homology comparison based on residual dipolar couplings and pseudocontact shifts , 2000, Journal of biomolecular NMR.

[32]  T Holton,et al.  Determining protein structure from electron-density maps using pattern matching. , 2000, Acta crystallographica. Section D, Biological crystallography.

[33]  D. Baker,et al.  De novo protein structure determination using sparse NMR data , 2000, Journal of biomolecular NMR.

[34]  W. Gronwald,et al.  RFAC, a program for automated NMR R-factor estimation , 2000, Journal of biomolecular NMR.

[35]  Yasuhiko Yoshida,et al.  Cell‐free production and stable‐isotope labeling of milligram quantities of proteins , 1999, FEBS letters.

[36]  Mark Gerstein,et al.  Structural proteomics of an archaeon , 2000, Nature Structural Biology.

[37]  R M Sweet,et al.  Integrated software for a macromolecular crystallography synchrotron beamline. , 1998, Acta crystallographica. Section D, Biological crystallography.

[38]  Udo Heinemann,et al.  Structural genomics in Europe: Slow start, strong finish? , 2000, Nature Structural Biology.

[39]  A. Jeltsch,et al.  Automated purification of His6-tagged proteins allows exhaustive screening of libraries generated by random mutagenesis. , 2000, BioTechniques.

[40]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[41]  Cheryl H. Arrowsmith,et al.  Protein production: feeding the crystallographers and NMR spectroscopists , 2000, Nature Structural Biology.

[42]  J H Prestegard,et al.  Rapid determination of protein folds using residual dipolar couplings. , 2000, Journal of molecular biology.

[43]  T. Bhat,et al.  The Protein Data Bank and the challenge of structural genomics , 2000, Nature Structural Biology.

[44]  V Lamzin,et al.  Ab initio solution and refinement of two high-potential iron protein structures at atomic resolution. , 1999, Acta crystallographica. Section D, Biological crystallography.

[45]  T. Earnest,et al.  Single-wavelength anomalous diffraction phasing revisited. , 2000, Acta crystallographica. Section D, Biological crystallography.

[46]  A Medek,et al.  An approach for high-throughput structure determination of proteins by NMR spectroscopy , 2000, Journal of biomolecular NMR.

[47]  Anastassis Perrakis,et al.  Current state of automated crystallographic data analysis , 2000, Nature Structural Biology.

[48]  J. Rullmann,et al.  Quality assessment of NMR structures: a statistical survey. , 1998, Journal of molecular biology.

[49]  L. Kay,et al.  New developments in isotope labeling strategies for protein solution NMR spectroscopy. , 2000, Current opinion in structural biology.

[50]  M A Walsh,et al.  Taking MAD to the extreme: ultrafast protein structure determination. , 1999, Acta crystallographica. Section D, Biological crystallography.

[51]  Thomas C. Terwilliger,et al.  Structural genomics in North America , 2000, Nature Structural Biology.

[52]  U Heinemann,et al.  An integrated approach to structural genomics. , 2000, Progress in biophysics and molecular biology.

[53]  P. Cramer,et al.  Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. , 2001, Structure.