Heralded noiseless amplification for single-photon entangled state with polarization feature

Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

[1]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[2]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[3]  Tie-Jun Wang,et al.  High-efficient entanglement distillation from photon loss and decoherence. , 2015, Optics express.

[4]  Nicolas Sangouard,et al.  Quantum repeaters based on heralded qubit amplifiers , 2011, 1111.5185.

[5]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[6]  N. Gisin,et al.  Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. , 2010, Physical review letters.

[7]  Félix Bussières,et al.  Heralded amplification of photonic qubits. , 2015, Optics express.

[8]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[9]  TianYu Ye Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise , 2015 .

[10]  Lan Zhou,et al.  Distillation of arbitrary single-photon entanglement assisted with polarized Bell states , 2015, Quantum Inf. Process..

[11]  Qing Ai,et al.  Toward quantum teleporting living objects , 2016 .

[12]  N. Gisin,et al.  Heralded amplification of path entangled quantum states , 2016 .

[13]  Guang-Can Guo,et al.  Continuous-variable-entanglement distillation with photon addition , 2013 .

[14]  A. P. Lund,et al.  Optimal architecture for a nondeterministic noiseless linear amplifier , 2014 .

[15]  T. Moroder,et al.  Heralded-qubit amplifiers for practical device-independent quantum key distribution , 2011, 1105.2573.

[16]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.

[17]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[18]  Jan Soubusta,et al.  Entanglement-based linear-optical qubit amplifier , 2013, 1306.1342.

[19]  Rubens Viana Ramos,et al.  Quantum secure direct communication of digital and analog signals using continuum coherent states , 2016, Quantum Inf. Process..

[20]  N. Gisin,et al.  Witnessing single-photon entanglement with local homodyne measurements: analytical bounds and robustness to losses , 2012, 1406.0381.

[21]  Wei Zhang,et al.  Experimental long-distance quantum secure direct communication. , 2017, Science bulletin.

[22]  H Zbinden,et al.  Revealing genuine optical-path entanglement. , 2015, Physical review letters.

[23]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[24]  Lei Wang,et al.  Protecting single-photon entanglement with practical entanglement source , 2017, Quantum Inf. Process..

[25]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[26]  N Gisin,et al.  Purification of single-photon entanglement. , 2010, Physical review letters.

[27]  Meiyu Wang,et al.  Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities , 2016, Quantum Inf. Process..

[28]  Zhang-Qi Yin,et al.  Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator , 2015, 1509.03763.

[29]  Yu-Bo Sheng,et al.  Recyclable amplification protocol for the single-photon entangled state , 2015 .

[30]  Guang-Can Guo,et al.  Protecting single-photon entangled state from photon loss with noiseless linear amplification , 2012 .

[31]  Lan Zhou,et al.  Efficient N-particle W state concentration with different parity check gates , 2012, 1204.1492.

[32]  Lan Zhou,et al.  Protecting single-photon entanglement with imperfect single-photon source , 2015, Quantum Inf. Process..

[33]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[34]  Xiongfeng Ma,et al.  Efficient heralding of photonic qubits with applications to device-independent quantum key distribution , 2011, 1105.2811.

[35]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[36]  N. Gisin,et al.  Heralded photon amplification for quantum communication , 2012, 1203.3396.

[37]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[38]  Yu-Bo Sheng,et al.  Entanglement assisted single-photon W state amplification , 2015 .

[39]  N. Gisin,et al.  Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection. , 2016, Physical review letters.

[40]  Wei Huang,et al.  Improved multiparty quantum key agreement in travelling mode , 2016, Science China Physics, Mechanics & Astronomy.

[41]  Lei Wang,et al.  Protecting sing-photon multi-mode W state from photon loss , 2014, Quantum Inf. Process..

[42]  Yu-Bo Sheng,et al.  Distributed secure quantum machine learning. , 2017, Science bulletin.

[43]  Geoff J. Pryde,et al.  Heralded noiseless amplification of a photon polarization qubit , 2012, Nature Physics.

[44]  Xiaoqian Zhang,et al.  Controlled quantum secure direct communication by entanglement distillation or generalized measurement , 2016, Quantum Information Processing.

[45]  Tie-Jun Wang,et al.  Linear-optical implementation of hyperdistillation from photon loss , 2014 .

[46]  Nicolas Gisin,et al.  Heralded Photon Amplification for Path Entangled Quantum Communication , 2017 .

[47]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[48]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[49]  Tianyu Ye,et al.  Fault tolerant channel-encrypting quantum dialogue against collective noise , 2015, 2205.03223.

[50]  Yu-Bo Sheng,et al.  Linear-optical qubit amplification with spontaneous parametric down-conversion source , 2015 .