Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins

This article reviews state-of-the-art microfluidic biosensors of nucleic acids and proteins for point-of-care (POC) diagnostics. Microfluidics is capable of analyzing small sample volumes (10−9–10−18 l) and minimizing costly reagent consumption as well as automating sample preparation and reducing processing time. The merger of microfluidics and advanced biosensor technologies offers new promises for POC diagnostics, including high-throughput analysis, portability and disposability. However, this merger also imposes technological challenges on biosensors, such as high sensitivity and selectivity requirements with sample volumes orders of magnitude smaller than those of conventional practices, false response errors due to non-specific adsorption, and integrability with other necessary modules. There have been many prior review articles on microfluidic-based biosensors, and this review focuses on the recent progress in last 5 years. Herein, we review general technologies of DNA and protein biosensors. Then, recent advances on the coupling of the biosensors to microfluidics are highlighted. Finally, we discuss the key challenges and potential solutions for transforming microfluidic biosensors into POC diagnostic applications.

[1]  Jacob J. Schmidt,et al.  Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. , 2009, ACS nano.

[2]  Christian Soeller,et al.  Novel Conducting Polymers for DNA Sensing , 2007 .

[3]  George M. Whitesides,et al.  Surveying for Surfaces that Resist the Adsorption of Proteins , 2000 .

[4]  Jun Kondoh,et al.  Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes , 2005 .

[5]  Chih-Ming Ho,et al.  Electrokinetic bioprocessor for concentrating cells and molecules. , 2004, Analytical chemistry.

[6]  G. Whitesides,et al.  Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. , 2008, Analytical chemistry.

[7]  F Lisdat,et al.  Impedance spectroscopy and biosensing. , 2008, Advances in biochemical engineering/biotechnology.

[8]  Patrick Tabeling,et al.  Ordered and disordered patterns in two-phase flows in microchannels. , 2003, Physical review letters.

[9]  Frank F Bier,et al.  Helicase dependent OnChip-amplification and its use in multiplex pathogen detection. , 2009, Clinica chimica acta; international journal of clinical chemistry.

[10]  G. Whitesides,et al.  Patterned paper as a platform for inexpensive, low-volume, portable bioassays. , 2007, Angewandte Chemie.

[11]  Alberto Escarpa,et al.  Real sample analysis on microfluidic devices. , 2007, Talanta.

[12]  Richard B M Schasfoort,et al.  Proteomics-on-a-chip: the challenge to couple lab-on-a-chip unit operations , 2004, Expert review of proteomics.

[13]  R. Lequin Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). , 2005, Clinical chemistry.

[14]  Sang Kug Chung,et al.  On-chip manipulation of objects using mobile oscillating bubbles , 2008 .

[15]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[16]  Chunsun Zhang,et al.  PCR microfluidic devices for DNA amplification. , 2006, Biotechnology advances.

[17]  C. M. Li,et al.  High-performance UV-curable epoxy resin-based microarray and microfluidic immunoassay devices. , 2009, Biosensors & bioelectronics.

[18]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[19]  P. Abgrall,et al.  Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .

[20]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[21]  Victor M Ugaz,et al.  Microfabricated electrophoresis systems for DNA sequencing and genotyping applications: current technology and future directions , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[23]  D. Di Carlo,et al.  Sheathless inertial cell ordering for extreme throughput flow cytometry. , 2010, Lab on a chip.

[24]  Laura M. Lechuga,et al.  Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices , 2006 .

[25]  M. Mayer,et al.  Estimation of solid phase affinity constants using resistive-pulses from functionalized nanoparticles. , 2007, Biosensors & bioelectronics.

[26]  G M Whitesides,et al.  A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. , 1999, Analytical chemistry.

[27]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[28]  Christian H. Reccius,et al.  Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. , 2006, Biophysical journal.

[29]  T. Thornton,et al.  Fabrication of Cylindrical Nanopores and Nanopore Arrays in Silicon-On-Insulator Substrates , 2007, Journal of Microelectromechanical Systems.

[30]  Collin Tranter,et al.  Glass-composite prototyping for flow PCR with in situ DNA analysis , 2010, Biomedical microdevices.

[31]  Alan P. Morrison,et al.  Transport of ions and biomolecules through single asymmetric nanopores in polymer films , 2005 .

[32]  Nicolas H Voelcker,et al.  Surface plasmon resonance imaging of polymer microarrays to study protein-polymer interactions in high throughput. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  Rashid Bashir,et al.  BioMEMS: state-of-the-art in detection, opportunities and prospects. , 2004, Advanced drug delivery reviews.

[34]  Lukas A. Huber Preface: Proteomics and Genomics Technologies , 2004, Journal of Mammary Gland Biology and Neoplasia.

[35]  Laura M. Lechuga,et al.  Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing , 2006 .

[36]  Gwo-Bin Lee,et al.  Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. , 2007, Biosensors & bioelectronics.

[37]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[38]  Fang Wei,et al.  A Microfluidic Cartridge System for Multiplexed Clinical Analysis , 2009, JALA.

[39]  Jana Lauzon,et al.  An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. , 2008, The Analyst.

[40]  Ramaier Narayanaswamy,et al.  Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors , 2006 .

[41]  J. Chae,et al.  A microfluidic biosensor based on competitive protein adsorption for thyroglobulin detection. , 2009, Biosensors & bioelectronics.

[42]  N. Chaniotakis,et al.  DNA Stabilization and Hybridization Detection on Porous Silicon Surface by EIS and Total Reflection FT‐IR Spectroscopy , 2008 .

[43]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[44]  Seokheun Choi,et al.  Methods of reducing non-specific adsorption in microfluidic biosensors , 2010 .

[45]  T. Huang,et al.  Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[46]  Avraham Rasooly Moving biosensors to point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[47]  S. J. Lee,et al.  Micro total analysis system (μ-TAS) in biotechnology , 2004, Applied Microbiology and Biotechnology.

[48]  A. Berg,et al.  Micro Total Analysis Systems , 1995 .

[49]  Andrew D Griffiths,et al.  Miniaturising the laboratory in emulsion droplets. , 2006, Trends in biotechnology.

[50]  Stephen C Jacobson,et al.  Nanofluidics in lab-on-a-chip devices. , 2009, Analytical chemistry.

[51]  Seokheun Choi,et al.  A regenerative biosensing surface in microfluidics using electrochemical desorption of short-chain self-assembled monolayer , 2009 .

[52]  Yuji Miyahara,et al.  Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor , 2004 .

[53]  Peter T Kissinger,et al.  Biosensors-a perspective. , 2005, Biosensors & bioelectronics.

[54]  N Balasubramanian,et al.  DNA sensing by silicon nanowire: charge layer distance dependence. , 2008, Nano letters.

[55]  L. H. Olesen,et al.  Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Marek Piliarik,et al.  Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging , 2009, Analytical and bioanalytical chemistry.

[57]  Terence G. Henares,et al.  Current development in microfluidic immunosensing chip. , 2008, Analytica chimica acta.

[58]  S. Shoji Micro Total Analysis Systems , 1999 .

[59]  S.P. Mohanty,et al.  Biosensors: a tutorial review , 2006, IEEE Potentials.

[60]  Jiang Zhe,et al.  A label-free high throughput resistive-pulse sensor for simultaneous differentiation and measurement of multiple particle-laden analytes , 2006 .

[61]  Jean-Francois Masson,et al.  Reduction of nonspecific protein binding on surface plasmon resonance biosensors , 2006, Analytical and bioanalytical chemistry.

[62]  G. Whitesides,et al.  Diagnostics for the developing world: microfluidic paper-based analytical devices. , 2010, Analytical chemistry.

[63]  Michael G. Roper,et al.  A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability , 2006, Proceedings of the National Academy of Sciences.

[64]  Joan Carletta,et al.  A micromachined high throughput Coulter counter for bioparticle detection and counting , 2007 .

[65]  N. Pourmand,et al.  Label-Free Impedance Biosensors: Opportunities and Challenges. , 2007, Electroanalysis.

[66]  Alfredo de la Escosura-Muñiz,et al.  Electrochemical analysis with nanoparticle-based biosystems , 2008 .

[67]  T Kitamori,et al.  Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. , 2000, Analytical chemistry.

[68]  Javad Alirezaie,et al.  Development of a novel microfluidic immunoassay for the detection of Helicobacter pylori infection. , 2004, The Analyst.

[69]  X. D. Hoa,et al.  Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. , 2007, Biosensors & bioelectronics.

[70]  M. Reed,et al.  Semiconducting Nanowire Field-Effect Transistor Biomolecular Sensors , 2008, IEEE Transactions on Electron Devices.

[71]  W. Schuhmann,et al.  Label‐Free Detection of DNA Hybridization in Presence of Intercalators Using Electrochemical Impedance Spectroscopy , 2009 .

[72]  Rui Zhang,et al.  Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs , 2008, IEEE Transactions on Nanotechnology.

[73]  Fred Lisdat,et al.  A label-free DNA sensor based on impedance spectroscopy , 2008 .

[74]  Subinoy Rana,et al.  Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. , 2009, Nature chemistry.

[75]  Thomas J. Morrow,et al.  Nanowire sensors for multiplexed detection of biomolecules. , 2008, Current opinion in chemical biology.

[76]  Mizuo Maeda,et al.  Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. , 2007, Biosensors & bioelectronics.

[77]  Jessica Melin,et al.  Microfluidic large-scale integration: the evolution of design rules for biological automation. , 2007, Annual review of biophysics and biomolecular structure.

[78]  D. J. Harrison,et al.  Clinical potential of microchip capillary electrophoresis systems , 1997, Electrophoresis.

[79]  Mohamad Sawan,et al.  CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach , 2009 .

[80]  Manabu Tokeshi,et al.  Development of the microchip-based repeatable immunoassay system for clinical diagnosis , 2006 .

[81]  Janos Vörös,et al.  Optical microarray biosensing techniques , 2006 .

[82]  Seokheun Choi,et al.  Surface plasmon resonance protein sensor using Vroman effect. , 2008, Biosensors & bioelectronics.

[83]  Tibor Chován,et al.  Microfabricated devices in biotechnology and biochemical processing. , 2002, Trends in biotechnology.

[84]  Sang Jun Sim,et al.  Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen , 2009 .

[85]  Kevin Ke,et al.  Submicrometer pore-based characterization and quantification of antibody-virus interactions. , 2006, Small.

[86]  Jacob J. Schmidt,et al.  Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. , 2008, Nano letters.

[87]  D. Branton,et al.  Voltage-driven DNA translocations through a nanopore. , 2001, Physical review letters.

[88]  Andrew J Wilson,et al.  Chemical sensing: Nanonose for sniffing out proteins. , 2009, Nature chemistry.

[89]  John H T Luong,et al.  Biosensor technology: technology push versus market pull. , 2008, Biotechnology advances.

[90]  Hirotsugu Ogi,et al.  Nonspecific-adsorption behavior of polyethylenglycol and bovine serum albumin studied by 55-MHz wireless-electrodeless quartz crystal microbalance. , 2009, Biosensors & bioelectronics.

[91]  Chih-Ming Ho,et al.  Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices , 2009, Microfluidics and nanofluidics.

[92]  C. P. Bean,et al.  Electrokinetic measurements with submicron particles and pores by the resistive pulse technique , 1977 .

[93]  H. B. Halsall,et al.  Microfluidic immunosensor systems. , 2005, Biosensors & bioelectronics.

[94]  Jan G. Korvink,et al.  Modeling, Simulation, and Optimization of Electrowetting , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[95]  Marin Sigurdson,et al.  AC electrothermal enhancement of heterogeneous assays in microfluidics. , 2007, Lab on a chip.

[96]  Andrew Glidle,et al.  Production of Quantum Dot Barcodes Using Biological Self‐Assembly , 2009 .

[97]  Jaephil Do,et al.  A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. , 2008, Lab on a chip.

[98]  Paul Yager,et al.  Suppression of non-specific adsorption using sheath flow. , 2004, Lab on a chip.

[99]  M. Niederweis,et al.  Single-molecule DNA detection with an engineered MspA protein nanopore , 2008, Proceedings of the National Academy of Sciences.

[100]  Joan Carletta,et al.  Detection and counting of micro-scale particles and pollen using a multi-aperture Coulter counter , 2006 .

[101]  João Carneiro,et al.  Identification of species with DNA-based technology: current progress and challenges. , 2008, Recent patents on DNA & gene sequences.

[102]  S C Jakeway,et al.  Miniaturized total analysis systems for biological analysis , 2000, Fresenius' journal of analytical chemistry.

[103]  J. Israelachvili,et al.  Differences between non-specific and bio-specific, and between equilibrium and non-equilibrium, interactions in biological systems , 2005, Quarterly Reviews of Biophysics.

[104]  P. Mitchell A perspective on protein microarrays , 2002, Nature Biotechnology.

[105]  S. Howorka,et al.  Probing distance and electrical potential within a protein pore with tethered DNA. , 2002, Biophysical journal.

[106]  Dazhi Wang,et al.  Electrothermal stirring for heterogeneous immunoassays. , 2005, Lab on a chip.

[107]  D. Landheer,et al.  Calculation of the Response of Field-Effect Transistors to Charged Biological Molecules , 2007, IEEE Sensors Journal.

[108]  Levent Yobas,et al.  High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. , 2006, Lab on a chip.

[109]  Hywel Morgan,et al.  Bead-based immunoassays using a micro-chip flow cytometer. , 2007, Lab on a chip.

[110]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[111]  L. Raffo,et al.  A CMOS, fully integrated sensor for electronic detection of DNA hybridization , 2006, IEEE Electron Device Letters.

[112]  Jarmila Janatova,et al.  An ImmunoChip prototype for simultaneous detection of antiepileptic drugs using an enhanced one-step homogeneous immunoassay. , 2007, Analytical biochemistry.

[113]  Zuzanna S Siwy,et al.  Learning Nature's Way: Biosensing with Synthetic Nanopores , 2007, Science.

[114]  A. Wanekaya,et al.  Towards biosensors based on conducting polymer nanowires , 2009, Analytical and bioanalytical chemistry.

[115]  N. Ramalingam,et al.  Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications , 2009, Biomedical microdevices.

[116]  P. Wong,et al.  Electrokinetics in micro devices for biotechnology applications , 2004, IEEE/ASME Transactions on Mechatronics.

[117]  Gregory W. Bishop,et al.  Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. , 2007, Journal of the American Chemical Society.

[118]  P. Milos,et al.  Emergence of single-molecule sequencing and potential for molecular diagnostic applications , 2009, Expert review of molecular diagnostics.

[119]  Mandy L Y Sin,et al.  Hybrid electrokinetics for separation, mixing, and concentration of colloidal particles , 2009, Nanotechnology.

[120]  Andreas Manz,et al.  Chip-based microsystems for genomic and proteomic analysis , 2000 .

[121]  S. Ingebrandt,et al.  Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. , 2007, Biosensors & bioelectronics.

[122]  A. Lee,et al.  Droplet microfluidics. , 2008, Lab on a chip.

[123]  Wen-Yih Chen,et al.  Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[124]  P. Yager,et al.  Controlled reagent transport in disposable 2D paper networks. , 2010, Lab on a chip.

[125]  Stuart J. Williams,et al.  Electrokinetic patterning of colloidal particles with optical landscapes. , 2008, Lab on a chip.

[126]  Qingming Luo,et al.  Microfluidic chip: next-generation platform for systems biology. , 2009, Analytica chimica acta.

[127]  Alex Smolyanitsky,et al.  Field effect modulation of ionic conductance of cylindrical silicon-on-insulator nanopore array , 2010 .

[128]  Catherine Situma,et al.  Merging microfluidics with microarray-based bioassays. , 2006, Biomolecular engineering.

[129]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[130]  Hywel Morgan,et al.  Microparticle encoding technologies for high-throughput multiplexed suspension assays , 2009, Integrative biology : quantitative biosciences from nano to macro.

[131]  Zuzanna S Siwy,et al.  Resistive-pulse DNA detection with a conical nanopore sensor. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[132]  Kevin Ke,et al.  Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. , 2006, Angewandte Chemie.

[133]  M. Chapman,et al.  High-throughput fluorescent multiplex array for indoor allergen exposure assessment. , 2006, The Journal of allergy and clinical immunology.

[134]  Jutamaad Satayavivad,et al.  Microfluidic approaches to malaria detection. , 2004, Acta tropica.

[135]  Raymond Mariella,et al.  Sample preparation: the weak link in microfluidics-based biodetection , 2008, Biomedical microdevices.

[136]  Luke P. Lee,et al.  Sample concentration and impedance detection on a microfluidic polymer chip , 2008, Biomedical microdevices.

[137]  K. Sato,et al.  Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient , 2008, Analytical and bioanalytical chemistry.

[138]  Roland Zengerle,et al.  Microfluidic platforms for lab-on-a-chip applications. , 2007, Lab on a chip.

[139]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[140]  Olivier R. Bolduc,et al.  Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[141]  Ziad J. Sahab,et al.  Methodology and Applications of Disease Biomarker Identification in Human Serum , 2007, Biomarker insights.

[142]  David Stoddart,et al.  Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore , 2009, Proceedings of the National Academy of Sciences.

[143]  Guoqing Hu,et al.  Development of a novel electrokinetically driven microfluidic immunoassay for the detection of Helic , 2005 .

[144]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[145]  R. Mathies,et al.  Integrated microfluidic systems for high-performance genetic analysis. , 2009, Trends in biotechnology.

[146]  Bin Sun,et al.  Lipoic acid glyco-conjugates, a new class of agents for controlling nonspecific adsorption of blood serum at biointerfaces for biosensor and biomedical applications. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[147]  Jin-Woo Choi,et al.  Disposable smart lab on a chip for point-of-care clinical diagnostics , 2004, Proceedings of the IEEE.

[148]  Tze Kin Lau,et al.  Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. , 2008, Clinical chemistry.

[149]  Lan Jiang,et al.  Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser. , 2009, Optics letters.

[150]  Eric P. Y. Chiou,et al.  EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. , 2009, Lab on a chip.

[151]  William H. Grover,et al.  Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. , 2006, Lab on a chip.

[152]  Susan Daniel,et al.  Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[153]  Hua Dong,et al.  Screen-printed microfluidic device for electrochemical immunoassay. , 2007, Lab on a chip.

[154]  Vincent Gau,et al.  Active Manipulation of Quantum Dots using AC Electrokinetics , 2009 .

[155]  Frédéric Reymond,et al.  Disposable microfluidic ELISA for the rapid determination of folic acid content in food products , 2006, Analytical and bioanalytical chemistry.

[156]  Andreas Offenhäusser,et al.  Impedimetric detection of covalently attached biomolecules on field‐effect transistors , 2009 .

[157]  Sadik C Esener,et al.  Alternating current electrokinetic separation and detection of DNA nanoparticles in high‐conductance solutions , 2008, Electrophoresis.

[158]  S. Shippy,et al.  Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection. , 2004, Analytical chemistry.

[159]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[160]  M.A. Alam,et al.  Design Considerations of Silicon Nanowire Biosensors , 2007, IEEE Transactions on Electron Devices.

[161]  Ding Xiang,et al.  A surface plasmon resonance imaging interferometry for protein micro-array detection , 2005 .

[162]  Marc Madou,et al.  Microfluidic device for rapid (<15 min) automated microarray hybridization. , 2005, Clinical chemistry.

[163]  Jiajun Gu,et al.  PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. , 2004, Nano letters.

[164]  Eric V Anslyn,et al.  Differential receptor arrays and assays for solution-based molecular recognition. , 2006, Chemical Society reviews.

[165]  H. Bayley,et al.  Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge , 2008, Proceedings of the National Academy of Sciences.

[166]  L. Fonseca,et al.  Trends in DNA biosensors , 2008, Talanta.

[167]  A. Boisen,et al.  Functionalization of SU-8 photoresist surfaces with IgG proteins , 2008 .

[168]  Andreas Offenhäusser,et al.  Label‐free detection of DNA using field‐effect transistors , 2006 .

[169]  Xuema Li,et al.  Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires , 2004 .

[170]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.