A discussion of the control of nonferrous metallurgical processes

Abstract Nonferrous metallurgical processes are featured by their complex nature. Control of nonferrous metallurgical processes is non-trivial and related to multiple disciplines. An example is presented to illustrate the basic procedure of nonferrous metallurgical process control. A feasible way to construct a unified control approach and the potential developments of nonferrous metallurgical process control are discussed.

[1]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[2]  Sigurd Skogestad Plantwide control: the search for the self-optimizing control structure , 2000 .

[3]  P.J. King,et al.  The application of fuzzy control systems to industrial processes , 1977, Autom..

[4]  Marianthi G. Ierapetritou,et al.  Optimal design of sustainable chemical processes and supply chains: A review , 2012, Comput. Chem. Eng..

[5]  Tore Hägglund,et al.  The future of PID control , 2000 .

[6]  Jing Zhou,et al.  Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance , 2011, IEEE Transactions on Automatic Control.

[7]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[8]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[9]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[10]  Tianyou Chai Optimal Operational Control for Complex Industrial Processes , 2012 .

[11]  Soumitra Dutta,et al.  Case-Based Reasoning Systems: From Automation to Decision-Aiding and Simulation , 1997, IEEE Trans. Knowl. Data Eng..

[12]  Karl-Erik Årzén,et al.  Expert control , 1986, at - Automatisierungstechnik.

[13]  Bjarne A. Foss,et al.  A field study of the industrial modeling process , 1998 .

[14]  C. Kravaris,et al.  Geometric methods for nonlinear process control. 1. Background , 1990 .

[15]  Weihua Gui,et al.  Modeling and optimal-setting control of blending process in a metallurgical industry , 2009, Comput. Chem. Eng..

[16]  Michael Nikolaou,et al.  RTO: An overview and assessment of current practice , 2011 .

[17]  S. Kim,et al.  Estimation methods for efficiency of additive in removing impurity in hydrometallurgical purification process , 2007 .

[18]  Weihua Gui,et al.  A gradient optimization scheme for solution purification process , 2015 .

[19]  E. L. Lima,et al.  Control strategies for complex chemical processes. Applications in polymerization processes , 2003, Comput. Chem. Eng..

[20]  Bogdan Gabrys,et al.  Data-driven Soft Sensors in the process industry , 2009, Comput. Chem. Eng..

[21]  Chunhua Yang,et al.  Intelligent optimal setting control of a cobalt removal process , 2014 .

[22]  Weihua Gui,et al.  An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity , 2002, IEEE Trans. Neural Networks.

[23]  Biao Huang Bayesian methods for control loop monitoring and diagnosis , 2008 .

[24]  Kok Lay Teo,et al.  Optimal control problems arising in the zinc sulphate electrolyte purification process , 2012, J. Glob. Optim..

[25]  Weihua Gui,et al.  An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential , 2013 .

[26]  Weihua Gui,et al.  Modeling and Optimization Problems and Challenges Arising in Nonferrous Metallurgical Processes , 2013 .

[27]  Jay H. Lee,et al.  Energy supply planning and supply chain optimization under uncertainty , 2014 .

[28]  Fabiola Angulo,et al.  A robust adaptive controller for an anaerobic digester with saturated input: Guarantees for the boundedness and convergence properties , 2012 .

[29]  Daniel Hodouin,et al.  Methods for automatic control, observation, and optimization in mineral processing plants , 2011 .

[30]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .