Relational data clustering algorithms with biomedical applications

[1]  James M. Keller,et al.  A relational dual of the fuzzy possibilistic c-means algorithm , 2010, International Conference on Fuzzy Systems.

[2]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[3]  James C. Bezdek,et al.  VCV2 - Visual Cluster Validity , 2008, WCCI.

[4]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[5]  K. McDonald,et al.  A systematic review of the care coordination measurement landscape , 2013, BMC Health Services Research.

[6]  Kotagiri Ramamohanarao,et al.  Approximate clustering in very large relational data , 2006, Int. J. Intell. Syst..

[7]  Maureen Dailey,et al.  The importance of health information technology in care coordination and transitional care. , 2013, Nursing outlook.

[8]  B. Yawn,et al.  Identifying Persons with Diabetes Using Medicare Claims Data , 1999, American journal of medical quality : the official journal of the American College of Medical Quality.

[9]  Nikolaos G. Bourbakis,et al.  A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[10]  Christos Faloutsos,et al.  Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation , 2011, PAKDD.

[11]  M. Naylor,et al.  Transitional Care of Older Adults Hospitalized with Heart Failure: A Randomized, Controlled Trial , 2004, Journal of the American Geriatrics Society.

[12]  Esa Alhoniemi,et al.  Clustering of the self-organizing map , 2000, IEEE Trans. Neural Networks Learn. Syst..

[13]  Feng Zeng,et al.  A Comparative Study of Ensemble Learning Approaches in the Classification of Breast Cancer Metastasis , 2009, 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing.

[14]  Glen T. Cameron,et al.  Cancer Coverage in General-Audience and Black Newspapers , 2008, Health communication.

[15]  Jacques Benasseni,et al.  On a General Transformation Making a Dissimilarity Matrix Euclidean , 2007, J. Classif..

[16]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[17]  Alfred Ultsch,et al.  Emergence in Self Organizing Feature Maps , 2007 .

[18]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[19]  Barbara Chamberlain,et al.  The value of nursing care coordination: a white paper of the American Nurses Association. , 2013, Nursing outlook.

[20]  Huan Liu,et al.  Predicting Future High-Cost Patients: A Real-World Risk Modeling Application , 2007, 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007).

[21]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[22]  M. Davison Introduction to Multidimensional Scaling and Its Applications , 1983 .

[23]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[24]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[25]  Robert C. Glen,et al.  Random Forest Models To Predict Aqueous Solubility , 2007, J. Chem. Inf. Model..

[26]  Barbara Hammer,et al.  Topographic Mapping of Large Dissimilarity Data Sets , 2010, Neural Computation.

[27]  Sung-joon Min,et al.  The care transitions intervention: results of a randomized controlled trial. , 2006, Archives of internal medicine.

[28]  José María Carazo,et al.  Smoothly distributed fuzzy c-means: a new self-organizing map , 2001, Pattern Recognit..

[29]  Ehsan Mohebi,et al.  Hybrid Kohonen Self Organizing Map for the Uncertainty Involved in Overlapping Clusters Using Simulated Annealing , 2009, 2009 11th International Conference on Computer Modelling and Simulation.

[30]  Alan L. Rector,et al.  OpenGALEN: Open Source Medical Terminology and Tools , 2003, AMIA.

[31]  I. Jolliffe Principal Component Analysis , 2002 .

[32]  Dong Xu,et al.  Data Mining in Biomedicine Using Ontologies , 2009 .

[33]  A. Tversky,et al.  Additive similarity trees , 1977 .

[34]  Fabien Moutarde,et al.  U*F clustering: a new performant "cluster-mining" method based on segmentation of Self-Organizing Maps , 2005 .

[35]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[36]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[37]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[38]  Olivier Bodenreider,et al.  The Unified Medical Language System (UMLS): integrating biomedical terminology , 2004, Nucleic Acids Res..

[39]  Marimuthu Palaniswami,et al.  Fuzzy c-Means Algorithms for Very Large Data , 2012, IEEE Transactions on Fuzzy Systems.

[40]  Sheng-Chai Chi,et al.  A fuzzy self-organizing map neural network for market segmentation of credit card , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[41]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[42]  Xin Jin,et al.  K-Means Clustering , 2010, Encyclopedia of Machine Learning.

[43]  Kotagiri Ramamohanarao,et al.  iVAT and aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment , 2010, PAKDD.

[44]  James M. Keller,et al.  Fuzzy Measures on the Gene Ontology for Gene Product Similarity , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  Jacalyn M. Huband,et al.  bigVAT: Visual assessment of cluster tendency for large data sets , 2005, Pattern Recognit..

[46]  Aïcha El Golli,et al.  A Self-Organizing Map for Dissimilarity Data , 2004 .

[47]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1994, Pattern Recognit..

[48]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[49]  Panu Somervuo,et al.  How to make large self-organizing maps for nonvectorial data , 2002, Neural Networks.

[50]  James M. Keller,et al.  Computing With Words With the Ontological Self-Organizing Map , 2010, IEEE Transactions on Fuzzy Systems.

[51]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[52]  Lawrence O. Hall,et al.  Fast Accurate Fuzzy Clustering through Data Reduction , 2003 .

[53]  James C. Bezdek,et al.  Relational duals of the c-means clustering algorithms , 1989, Pattern Recognit..

[54]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[55]  Muin J. Khoury,et al.  Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes , 2010, BMC Medical Informatics Decis. Mak..

[56]  James C. Bezdek,et al.  An index of topological preservation and its application to self-organizing feature maps , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[57]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[58]  James M. Keller,et al.  Relational Generalizations of Cluster Validity Indices , 2010, IEEE Transactions on Fuzzy Systems.

[59]  E. Holman The relation between hierarchical and euclidean models for psychological distances , 1972 .

[60]  Beatrice Lazzerini,et al.  A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm , 2005, Soft Comput..

[61]  Yi Tan,et al.  The application of machine learning algorithm in underwriting process , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[62]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[63]  Mohammad Khalilia,et al.  Predicting disease risks from highly imbalanced data using random forest , 2011, BMC Medical Informatics Decis. Mak..

[64]  Bjoern H. Menze,et al.  A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data , 2009, BMC Bioinformatics.

[65]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[66]  Marilyn Rantz,et al.  Clinical Outcomes of Aging in Place , 2005, Nursing research.

[67]  Lawrence O. Hall,et al.  A Scalable Framework For Segmenting Magnetic Resonance Images , 2009, J. Signal Process. Syst..

[68]  Magnus Johnsson,et al.  Applications of Self-Organizing Maps , 2012 .

[69]  Kent A. Spackman,et al.  SNOMED RT: a reference terminology for health care , 1997, AMIA.

[70]  Tom Heskes,et al.  Self-organizing maps, vector quantization, and mixture modeling , 2001, IEEE Trans. Neural Networks.

[71]  James M. Keller,et al.  Will the real iris data please stand up? , 1999, IEEE Trans. Fuzzy Syst..

[72]  A. Ultsch Maps for the Visualization of high-dimensional Data Spaces , 2003 .

[73]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[74]  Barbara Hammer,et al.  Relational Topographic Maps , 2007, IDA.

[75]  Foster Provost,et al.  Machine Learning from Imbalanced Data Sets 101 , 2008 .

[76]  Mohammad Khalilia,et al.  Fuzzy relational self-organizing maps , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[77]  Kimmo Kiviluoto,et al.  Topology preservation in self-organizing maps , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[78]  Josef Kittler,et al.  Automatic watershed segmentation of randomly textured color images , 1997, IEEE Trans. Image Process..

[79]  Leonid Churilov,et al.  Towards fair ranking of Olympics achievements: the case of Sydney 2000 , 2006, Comput. Oper. Res..