A partitioned scheme for fluid-composite structure interaction problems

We present a benchmark problem and a loosely-coupled partitioned scheme for fluid-structure interaction with composite structures. The benchmark problem consists of an incompressible, viscous fluid interacting with a structure composed of two layers: a thin elastic layer with mass which is in contact with the fluid and modeled by the Koiter membrane/shell equations, and a thick elastic layer with mass modeled by the equations of linear elasticity. An efficient, modular, partitioned operator-splitting scheme is proposed to simulate solutions to the coupled, nonlinear FSI problem, without the need for sub-iterations at every time-step. An energy estimate associated with unconditional stability is derived for the fully nonlinear FSI problem defined on moving domains. Two instructive numerical benchmark problems are presented to test the performance of numerical FSI schemes involving composite structures. It is shown numerically that the proposed scheme is at least first-order accurate both in time and space. This work reveals a new physical property of FSI problems involving thin interfaces with mass: the inertia of the thin fluid-structure interface regularizes solutions to the full FSI problem.

[1]  C. Peskin,et al.  A computational fluid dynamics of `clap and fling' in the smallest insects , 2005, Journal of Experimental Biology.

[2]  Enrique Zuazua,et al.  Polynomial decay for a hyperbolic–parabolic coupled system , 2005 .

[3]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[4]  Boyce E. Griffith,et al.  An adaptive, formally second order accurate version of the immersed boundary method , 2007, J. Comput. Phys..

[5]  L. Fauci,et al.  Biofluidmechanics of Reproduction , 2006 .

[6]  oris,et al.  Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible , viscous fluid in a cylinder with deformable walls , 2012 .

[7]  Sunčica Čanić,et al.  Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation. , 2013, Mathematical biosciences and engineering : MBE.

[8]  Mária Lukáčová-Medvid’ová,et al.  Kinematic splitting algorithm for fluid–structure interaction in hemodynamics , 2013 .

[9]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[10]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[11]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[12]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[13]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[14]  Annalisa Quaini,et al.  Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement , 2012, J. Comput. Phys..

[15]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[16]  Suncica Canic,et al.  Stability of the kinematically coupled \beta-scheme for fluid-structure interaction problems in hemodynamics , 2012 .

[17]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[18]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[19]  Zhifang Lin,et al.  Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Xiao-Chuan Cai,et al.  Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling , 2010, J. Comput. Phys..

[21]  Charles S. Peskin,et al.  Simulations of the Whirling Instability by the Immersed Boundary Method , 2004, SIAM J. Sci. Comput..

[22]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[23]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[24]  Boyce E. Griffith,et al.  Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method , 2009 .

[25]  Miguel A. Fernández,et al.  Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..

[26]  Enrique Zuazua,et al.  Exact Controllability and Stabilization of a Vibrating String with an Interior Point Mass , 1995 .

[27]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[28]  Suncica Canic,et al.  Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem , 2007, Networks Heterog. Media.

[29]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[30]  Cornel Marius Murea,et al.  A fast method for solving fluid–structure interaction problems numerically , 2009 .

[31]  Gustavo C. Buscaglia,et al.  Arbitrary Lagrangian-Eulerian (ALE)-Based Finite Element Methods for Rigid Solids Immersed in Fluids , 2016 .

[32]  Ernst Rank,et al.  Two-dimensional simulation of fluid–structure interaction using lattice-Boltzmann methods , 2001 .

[33]  Boyce E. Griffith,et al.  On the Volume Conservation of the Immersed Boundary Method , 2012 .

[34]  van Eh Harald Brummelen,et al.  A monolithic approach to fluid–structure interaction , 2004 .

[35]  Patrick Patrick Anderson,et al.  A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves , 2004 .

[36]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[37]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[38]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[39]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[40]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[41]  Young W. Kwon,et al.  Dynamic Responses of Composite Structures with Fluid-Structure Interaction , 2011 .

[43]  Preprint Seria,et al.  Existence of a solution to a fluid-multi-layered-structure interaction problem , 2013 .

[44]  Enrique Zuazua,et al.  Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction , 2007 .

[45]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[46]  Hermann G. Matthies,et al.  Numerical Efficiency of Different Partitioned Methods for Fluid‐Structure Interaction , 2000 .

[47]  Boyce E. Griffith,et al.  Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions , 2012, International journal for numerical methods in biomedical engineering.

[48]  Boris Muha,et al.  Existence of a Weak Solution to a Nonlinear Fluid–Structure Interaction Problem Modeling the Flow of an Incompressible, Viscous Fluid in a Cylinder with Deformable Walls , 2012, Archive for Rational Mechanics and Analysis.

[49]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[50]  Charles S. Peskin,et al.  - 1-A COMPUTATIONAL FLUID DYNAMICS STUDY OF ‘ CLAP AND FLING ’ IN THE SMALLEST INSECTS , 2004 .

[51]  A. Leuprecht,et al.  Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. , 2002, Journal of biomechanics.

[52]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[53]  M W Collins,et al.  The numerical analysis of fluid-solid interactions for blood flow in arterial structures Part 2: Development of coupled fluid-solid algorithms , 1998, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[54]  G. C. Lee.,et al.  Numerical simulation for the propagation of nonlinear pulsatile waves in arteries. , 1992, Journal of biomechanical engineering.

[55]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[56]  Suncica Canic,et al.  Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries , 2005, Multiscale Model. Simul..

[57]  Suncica Canic,et al.  Existence of a solution to a fluid-multi-layered-structure interaction problem , 2013, 1305.5310.

[58]  Miguel Cervera,et al.  On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled Problems , 1996 .

[59]  Boris Muha,et al.  A note on optimal regularity and regularizing effects of point mass coupling for a heat-wave system , 2014, 1403.3965.

[60]  Matteo Astorino,et al.  An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .

[61]  Annalisa Quaini,et al.  A modular, operator‐splitting scheme for fluid–structure interaction problems with thick structures , 2013, 1311.3324.

[62]  M Cerrolaza,et al.  Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice-Boltzmann methods. , 1998, Journal of biomechanics.

[63]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[64]  Miguel Angel Fernández,et al.  Displacement-velocity correction schemes for incompressible fluid-structure interaction , 2011 .

[65]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[66]  Boris Muha,et al.  A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof , 2013, Commun. Inf. Syst..

[67]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[68]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[69]  G. Cottet,et al.  EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .

[70]  Ivan Yotov,et al.  An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure , 2015 .

[71]  Miguel Angel Fernández,et al.  Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid , 2011 .

[72]  Miguel A. Fernández,et al.  A projection algorithm for fluid–structure interaction problems with strong added-mass effect , 2006 .

[73]  Z. Feng,et al.  The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems , 2004 .

[74]  Miguel A. Fernández,et al.  Incremental displacement-correction schemes for incompressible fluid-structure interaction , 2012, Numerische Mathematik.

[75]  Charles S. Peskin,et al.  Modeling prosthetic heart valves for numerical analysis of blood flow in the heart , 1980 .

[76]  Miguel A. Fernández,et al.  ACCELERATION OF A FIXED POINT ALGORITHM FOR FLUID-STRUCTURE INTERACTION USING TRANSPIRATION CONDITIONS , 2003 .

[77]  Enrique Zuazua,et al.  Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces , 2014, Math. Comput..

[78]  Aaron L Fogelson,et al.  Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. , 2004, Mathematical medicine and biology : a journal of the IMA.