Base-Free Aqueous-Phase Oxidation of 5-Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks.

The base-free aqueous-phase oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxilic acid (FDCA) was performed at 140 °C and 20 bar of synthetic air as the oxidant. Ru clusters supported on covalent triazine frameworks (CTFs) enabled superior conversion (99.9%) and FDCA yields in comparison to other support materials such as activated carbon and γ-Al2O3 after only 1 h. The properties of the CTFs such as pore volume, specific surface area, and polarity could be tuned by using different monomers. These material properties influence the catalytic activity of Ru/CTF significantly as mesoporous CTFs showed superior activity compared to microporous materials, whereas high polarities provide further beneficial effects. The recyclability of the prepared Ru/CTF catalysts was comparable to that of Ru/C at high conversions and product yields. Nevertheless, minor deactivation in five successive recycling experiments was observed.

[1]  Haichao Liu,et al.  Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran , 2013 .

[2]  R. Palkovits,et al.  Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. , 2012, Angewandte Chemie.

[3]  Arne Thomas,et al.  Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. , 2012, ChemSusChem.

[4]  Qinghong Zhang,et al.  Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles , 2014 .

[5]  P. Gallezot,et al.  Chemoselective catalytic oxidation of glycerol with air on platinum metals , 1995 .

[6]  R. Palkovits,et al.  Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. , 2015, ChemSusChem.

[7]  A. Amarasekara,et al.  Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran-urea resin , 2009 .

[8]  Arne Thomas,et al.  Ionothermalsynthese von porösen kovalenten Triazin‐ Polymernetzwerken , 2008 .

[9]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[10]  Carlo Carlini,et al.  Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate , 2005 .

[11]  Markus Antonietti,et al.  Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles , 2009 .

[12]  James A. Dumesic,et al.  Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides , 2007 .

[13]  Changwei Hu,et al.  A One-Pot Two-Step Approach for the Catalytic Conversion of Glucose into 2,5-Diformylfuran , 2011 .

[14]  A. Riisager,et al.  Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports , 2011 .

[15]  G. Huber,et al.  Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. , 2007, Angewandte Chemie.

[16]  W. Wilson,et al.  Extended aromatic furan amidino derivatives as anti-Pneumocystis carinii agents. , 1998, Journal of medicinal chemistry.

[17]  Regina Palkovits,et al.  Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation. , 2013, ChemSusChem.

[18]  A. Gandini,et al.  Recent advances in the elaboration of polymeric materials derived from biomass components , 1998 .

[19]  M. Antonietti,et al.  Solid catalysts for the selective low-temperature oxidation of methane to methanol. , 2009, Angewandte Chemie.

[20]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[21]  Arne Thomas,et al.  Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene , 2013 .

[22]  Haichao Liu,et al.  Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts , 2013 .

[23]  Haichao Liu,et al.  Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base , 2014 .

[24]  Kai Leonhard,et al.  Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering , 2014 .

[25]  M. Dam,et al.  Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters , 2012 .

[26]  A. Riisager,et al.  Effect of Support in Heterogeneous Ruthenium Catalysts Used for the Selective Aerobic Oxidation of HMF in Water , 2011 .

[27]  A. Amarasekara,et al.  Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts , 2008 .

[28]  E. García-Bordejé,et al.  Elucidation of Catalyst Support Effect for NH3 Decomposition Using Ru Nanoparticles on Nitrogen-Functionalized Carbon Nanofiber Monoliths , 2012 .

[29]  Robert J. Davis,et al.  Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts , 2011 .

[30]  Ed de Jong,et al.  Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. , 2013, Chemical reviews.

[31]  F. Schüth,et al.  Feste Katalysatoren für die selektive Niedertemperaturoxidation von Methan zu Methanol , 2009 .

[32]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[33]  H. V. Bekkum,et al.  Highly selective oxidation of aldonic acids to 2-keto-aldonic acids over Pt—Bi and Pt—Pb catalysts , 1995 .

[34]  V. Grushin,et al.  Synthesis of 2,5‐Diformylfuran and Furan‐2,5‐Dicarboxylic Acid by Catalytic Air‐Oxidation of 5‐Hydroxymethylfurfural. Unexpectedly Selective Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde with Metal=Bromide Catalysts , 2001 .

[35]  Antoine Gaset,et al.  Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique , 1993 .

[36]  H. V. Bekkum,et al.  Effect of pH in the Pt-catalyzed oxidation of d-glucose to d-gluconic acid , 1995 .

[37]  Ferdi Schüth,et al.  Design of solid catalysts for the conversion of biomass , 2009 .

[38]  Robert J. Davis,et al.  On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts , 2012 .

[39]  Juben Nemchand Chheda,et al.  Katalytische Flüssigphasenumwandlung oxygenierter Kohlenwasserstoffe aus Biomasse zu Treibstoffen und Rohstoffen für die Chemiewirtschaft , 2007 .

[40]  R. Palkovits,et al.  Hydrogenolyse goes Bio: Von Kohlenhydraten und Zuckeralkoholen zu Plattformchemikalien , 2012 .

[41]  Martin Kumar Patel,et al.  Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance , 2012 .

[42]  Johnathan E. Holladay,et al.  Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural , 2007, Science.

[43]  Atsushi Takagaki,et al.  Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure , 2011 .

[44]  M. Del Poeta,et al.  In Vitro Antifungal Activities of a Series of Dication-Substituted Carbazoles, Furans, and Benzimidazoles , 1998, Antimicrobial Agents and Chemotherapy.

[45]  Robin J. White,et al.  Direct methane oxidation over Pt-modified nitrogen-doped carbons. , 2013, Chemical communications.

[46]  Alessandro Gandini,et al.  Furans in polymer chemistry , 1997 .

[47]  R. Palkovits,et al.  Selective Liquid Phase Adsorption of 5-Hydroxymethylfurfural on Nanoporous Hyper-Cross-Linked Polymers , 2014 .

[48]  C. Afonso,et al.  5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications , 2011 .

[49]  A. Villa,et al.  Influence of periodic nitrogen functionality on the selective oxidation of alcohols. , 2012, Chemistry, an Asian journal.