A Topos for Algebraic Quantum Theory
暂无分享,去创建一个
Bas Spitters | Chris Heunen | Nicolaas P. Landsman | N. P. Landsman | Bas Spitters | C. Heunen | Bas Spitters
[1] Nicolaas P. Landsman,et al. Mathematical Topics Between Classical and Quantum Mechanics , 1998 .
[2] S. Lane,et al. Sheaves In Geometry And Logic , 1992 .
[3] Philip J. Scott,et al. Review: Robert Goldblatt, Topoi. The Categorical Analysis of Logic , 1982 .
[4] H. Dishkant,et al. Logic of Quantum Mechanics , 1976 .
[5] Isar Stubbe,et al. Propositional systems, Hilbert lattices and generalized hilbert spaces , 2007 .
[6] T. Coquand,et al. Constructive Gelfand duality for C*-algebras , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Adam Grabowski,et al. Orthomodular Lattices , 2008, Formaliz. Math..
[8] Traces, Dispersions of States and Hidden Variables , 2004 .
[9] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[10] C. J. Isham,et al. A topos foundation for theories of physics: I. Formal languages for physics , 2007 .
[11] Steven J. Vickers. Locales and Toposes as Spaces , 2007, Handbook of Spatial Logics.
[12] Andreas Doering,et al. “What is a Thing?”: Topos Theory in the Foundations of Physics , 2008, 0803.0417.
[13] Gudrun Kalmbach. Measures and Hilbert Lattices , 1986 .
[14] Bas Spitters,et al. Constructive algebraic integration theory without choice , 2005, Mathematics, Algorithms, Proofs.
[15] A sheaf model for intuitionistic quantum mechanics , 1995, Appl. Categorical Struct..
[16] Jeffrey Bub,et al. Interpreting the Quantum World , 1997 .
[17] Giulia Battilotti,et al. Pretopologies and a uniform presentation of sup-lattices, quantales and frames , 2006, Ann. Pure Appl. Log..
[18] G. Sardanashvily,et al. What is geometry in quantum theory , 2004 .
[19] Thierry Coquand,et al. Compact spaces and distributive lattices , 2003 .
[20] John E. Roberts,et al. A new duality theory for compact groups , 1989 .
[21] C. J. Isham,et al. Topos Perspective on the Kochen–Specker Theorem: IV. Interval Valuations , 2001 .
[22] C. J. Isham,et al. A topos foundation for theories of physics: III. The representation of physical quantities with arrows δ{sup o}(A):Ï lowbar âR{sup sccue} lowbar , 2007 .
[23] Sara Negri,et al. Continuous domains as formal spaces , 2002, Mathematical Structures in Computer Science.
[24] Thierry Coquand,et al. Inductively generated formal topologies , 2003, Ann. Pure Appl. Log..
[25] Reinhold Heckmann,et al. Probabilistic Power Domains, Information Systems, and Locales , 1993, MFPS.
[26] J. Neumann,et al. The Logic of Quantum Mechanics , 1936 .
[27] Andreas Döring. Kochen–Specker Theorem for von Neumann Algebras , 2005 .
[28] T. Coquand. About Stone's notion of spectrum , 2005 .
[29] Steven Vickers. The connected Vietoris powerlocale , 2009 .
[30] D. A. Edwards. The mathematical foundations of quantum mechanics , 1979, Synthese.
[31] Matthew Tobias Jackson,et al. A SHEAF THEORETIC APPROACH TO MEASURE THEORY , 2006 .
[32] J. Wright,et al. THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS , 1996 .
[33] Marcelo P Fiore,et al. Topology via Logic , 1999 .
[34] R. Goldblatt. Topoi, the Categorial Analysis of Logic , 1979 .
[35] Giovanni Sambin,et al. Some points in formal topology , 2003, Theor. Comput. Sci..
[36] R. Haag,et al. Local quantum physics , 1992 .
[37] Steven J. Vickers. A localic theory of lower and upper integrals , 2008, Math. Log. Q..
[38] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[39] Peter Gärdenfors,et al. In the Scope of Logic, Methodology, and Philosophy of Science (Vol II) , 2002 .
[40] Gérard G. Emch,et al. Mathematical and conceptual foundations of 20th-century physics , 1984 .
[41] C. McLarty. The Uses and Abuses of the History of Topos Theory , 1990, The British Journal for the Philosophy of Science.
[42] J. Marquis. Mathematical Conceptware: Category Theory Ralf Krömer. Tool and Object: A History and Philosophy of Category Theory , 2010 .
[43] Martin Davis,et al. A relativity principle in quantum mechanics , 1977 .
[44] N. P. Landsman. Lecture Notes on C -Algebras and K-Theory , 2003 .
[45] Niels Bohr,et al. Discussion with Einstein on Epistemological Problems in Atomic Physics , 1996 .
[46] M. P. Fourman,et al. The “world's simplest axiom of choice” fails , 1982 .
[47] A. Doering,et al. Quantum States and Measures on the Spectral Presheaf , 2008, 0809.4847.
[48] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[49] C. J. Isham,et al. Topos Perspective on the Kochen=nSpeckerTheorem: III. Von Neumann Algebras as theBase Category , 1999 .
[50] G. Sambin. Intuitionistic Formal Spaces — A First Communication , 1987 .
[52] Steven Vickers. THE DOUBLE POWERLOCALE AND EXPONENTIATION: A CASE STUDY IN GEOMETRIC LOGIC , 2004 .
[53] Dimiter G. Skordev. Mathematical Logic and Its Applications , 2011 .
[54] Dov M. Gabbay,et al. Handbook of Philosophical Logic. Volume 1 , 1989 .
[55] Bas Spitters,et al. Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.
[56] Bernhard Banaschewski,et al. A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..
[57] John Earman,et al. Handbook of philosophy of science , 2007 .
[58] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, LICS 2004.
[59] Thierry Coquand,et al. Formal Topology and Constructive Mathematics: the Gelfand and Stone-Yosida Representation Theorems , 2005, J. Univers. Comput. Sci..
[60] N. P. Landsman. Between classical and quantum , 2005 .
[61] Karl Svozil,et al. Quantum Logic in Algebraic Approach , 2001 .
[62] 河東 泰之,et al. A.Connes:Noncommutative Geometry , 1997 .
[63] Bernhard Banaschewski,et al. The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .
[64] Peter T. Johnstone,et al. Open locales and exponentiation , 1984 .
[65] Francis Borceux,et al. Handbook of Categorical Algebra: Bibliography , 1994 .
[66] C. J. Isham,et al. A Topos Foundation for Theories of Physics: IV. Categories of Systems , 2008 .
[67] Ieke Moerdijk,et al. TOPOSES ARE COHOMOLOGICALLY EQUIVALENT TO SPACES , 1990 .
[68] L. Bunce,et al. The Mackey‐Gleason Problem for Vector Measures on Projections in Von Neumann Algebras , 1994 .
[69] Klaus Keimel,et al. The probabilistic powerdomain for stably compact spaces , 2004, Theor. Comput. Sci..
[70] Hans F. de Groote. On a canonical lattice structure on the effect algebra of a von Neumann algebra , 2004 .
[71] Steven J. Vickers,et al. Compactness in locales and in formal topology , 2006, Ann. Pure Appl. Log..
[72] A. Connes,et al. Noncommutative Geometry, Quantum Fields and Motives , 2007 .
[73] C. J. Isham,et al. A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory , 2008 .
[74] N. P. Landsman. MACROSCOPIC OBSERVABLES AND THE BORN RULE, I: LONG RUN FREQUENCIES , 2008, 0804.4849.
[75] Sally Popkorn,et al. A Handbook of Categorical Algebra , 2009 .
[76] P. Johnstone,et al. REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .
[77] Peter Aczel,et al. Aspects of general topology in constructive set theory , 2006, Ann. Pure Appl. Log..
[78] Thierry Coquand,et al. Integrals and valuations , 2008, J. Log. Anal..
[79] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[80] Fred Richman. Generalized real numbers in constructive mathematics , 1998 .
[81] Bernhard Banaschewski,et al. The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .
[82] A. Joyal,et al. An extension of the Galois theory of Grothendieck , 1984 .
[83] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[84] K. Fredenhagen,et al. Communications in Mathematical Physics The Generally Covariant Locality Principle – A New Paradigm for Local Quantum Field Theory , 2022 .
[85] John L. Bell,et al. Toposes and local set theories - an introduction , 1988 .
[86] Some Worlds of Quantum Theory , 2001, quant-ph/0105052.
[87] C. J. Isham,et al. A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .
[88] C. J. Isham,et al. Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.
[89] C. J. Isham. Topos theory and consistent histories: The internal logic of the set of all consistent sets , 1996 .
[90] K. Parthasarathy. An Introduction to Quantum Stochastic Calculus , 1992 .
[91] Steven Vickers,et al. Localic completion of generalized metric spaces I , 2005 .
[92] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .
[93] Bas Spitters,et al. Bohrification of operator algebras and quantum logic , 2009, Synthese.
[94] Francis Borceux,et al. A Handbook of Categorical Algebra 3: Categories of sheaves , 1994 .
[95] S. Buss,et al. Entailment relations and distributive lattices , 2000 .
[96] J. Aarnes. Quasi-states on *-algebras , 1970 .