A Topos for Algebraic Quantum Theory

The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos $${\mathcal{T}(A)}$$ in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra $${\underline{A}}$$ . According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum $${\underline{\Sigma}(\underline{A})}$$ in $${\mathcal{T}(A)}$$ , which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on $${\underline{\Sigma}}$$ , and self-adjoint elements of A define continuous functions (more precisely, locale maps) from $${\underline{\Sigma}}$$ to Scott’s interval domain. Noting that open subsets of $${\underline{\Sigma}(\underline{A})}$$ correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos $${\mathcal{T}(A)}$$.These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.

[1]  Nicolaas P. Landsman,et al.  Mathematical Topics Between Classical and Quantum Mechanics , 1998 .

[2]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[3]  Philip J. Scott,et al.  Review: Robert Goldblatt, Topoi. The Categorical Analysis of Logic , 1982 .

[4]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[5]  Isar Stubbe,et al.  Propositional systems, Hilbert lattices and generalized hilbert spaces , 2007 .

[6]  T. Coquand,et al.  Constructive Gelfand duality for C*-algebras , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[8]  Traces, Dispersions of States and Hidden Variables , 2004 .

[9]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[10]  C. J. Isham,et al.  A topos foundation for theories of physics: I. Formal languages for physics , 2007 .

[11]  Steven J. Vickers Locales and Toposes as Spaces , 2007, Handbook of Spatial Logics.

[12]  Andreas Doering,et al.  “What is a Thing?”: Topos Theory in the Foundations of Physics , 2008, 0803.0417.

[13]  Gudrun Kalmbach Measures and Hilbert Lattices , 1986 .

[14]  Bas Spitters,et al.  Constructive algebraic integration theory without choice , 2005, Mathematics, Algorithms, Proofs.

[15]  A sheaf model for intuitionistic quantum mechanics , 1995, Appl. Categorical Struct..

[16]  Jeffrey Bub,et al.  Interpreting the Quantum World , 1997 .

[17]  Giulia Battilotti,et al.  Pretopologies and a uniform presentation of sup-lattices, quantales and frames , 2006, Ann. Pure Appl. Log..

[18]  G. Sardanashvily,et al.  What is geometry in quantum theory , 2004 .

[19]  Thierry Coquand,et al.  Compact spaces and distributive lattices , 2003 .

[20]  John E. Roberts,et al.  A new duality theory for compact groups , 1989 .

[21]  C. J. Isham,et al.  Topos Perspective on the Kochen–Specker Theorem: IV. Interval Valuations , 2001 .

[22]  C. J. Isham,et al.  A topos foundation for theories of physics: III. The representation of physical quantities with arrows δ{sup o}(A):Ï lowbar âR{sup sccue} lowbar , 2007 .

[23]  Sara Negri,et al.  Continuous domains as formal spaces , 2002, Mathematical Structures in Computer Science.

[24]  Thierry Coquand,et al.  Inductively generated formal topologies , 2003, Ann. Pure Appl. Log..

[25]  Reinhold Heckmann,et al.  Probabilistic Power Domains, Information Systems, and Locales , 1993, MFPS.

[26]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[27]  Andreas Döring Kochen–Specker Theorem for von Neumann Algebras , 2005 .

[28]  T. Coquand About Stone's notion of spectrum , 2005 .

[29]  Steven Vickers The connected Vietoris powerlocale , 2009 .

[30]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[31]  Matthew Tobias Jackson,et al.  A SHEAF THEORETIC APPROACH TO MEASURE THEORY , 2006 .

[32]  J. Wright,et al.  THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS , 1996 .

[33]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[34]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[35]  Giovanni Sambin,et al.  Some points in formal topology , 2003, Theor. Comput. Sci..

[36]  R. Haag,et al.  Local quantum physics , 1992 .

[37]  Steven J. Vickers A localic theory of lower and upper integrals , 2008, Math. Log. Q..

[38]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[39]  Peter Gärdenfors,et al.  In the Scope of Logic, Methodology, and Philosophy of Science (Vol II) , 2002 .

[40]  Gérard G. Emch,et al.  Mathematical and conceptual foundations of 20th-century physics , 1984 .

[41]  C. McLarty The Uses and Abuses of the History of Topos Theory , 1990, The British Journal for the Philosophy of Science.

[42]  J. Marquis Mathematical Conceptware: Category Theory Ralf Krömer. Tool and Object: A History and Philosophy of Category Theory , 2010 .

[43]  Martin Davis,et al.  A relativity principle in quantum mechanics , 1977 .

[44]  N. P. Landsman Lecture Notes on C -Algebras and K-Theory , 2003 .

[45]  Niels Bohr,et al.  Discussion with Einstein on Epistemological Problems in Atomic Physics , 1996 .

[46]  M. P. Fourman,et al.  The “world's simplest axiom of choice” fails , 1982 .

[47]  A. Doering,et al.  Quantum States and Measures on the Spectral Presheaf , 2008, 0809.4847.

[48]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[49]  C. J. Isham,et al.  Topos Perspective on the Kochen=nSpeckerTheorem: III. Von Neumann Algebras as theBase Category , 1999 .

[50]  G. Sambin Intuitionistic Formal Spaces — A First Communication , 1987 .

[52]  Steven Vickers THE DOUBLE POWERLOCALE AND EXPONENTIATION: A CASE STUDY IN GEOMETRIC LOGIC , 2004 .

[53]  Dimiter G. Skordev Mathematical Logic and Its Applications , 2011 .

[54]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic. Volume 1 , 1989 .

[55]  Bas Spitters,et al.  Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.

[56]  Bernhard Banaschewski,et al.  A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..

[57]  John Earman,et al.  Handbook of philosophy of science , 2007 .

[58]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[59]  Thierry Coquand,et al.  Formal Topology and Constructive Mathematics: the Gelfand and Stone-Yosida Representation Theorems , 2005, J. Univers. Comput. Sci..

[60]  N. P. Landsman Between classical and quantum , 2005 .

[61]  Karl Svozil,et al.  Quantum Logic in Algebraic Approach , 2001 .

[62]  河東 泰之,et al.  A.Connes:Noncommutative Geometry , 1997 .

[63]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .

[64]  Peter T. Johnstone,et al.  Open locales and exponentiation , 1984 .

[65]  Francis Borceux,et al.  Handbook of Categorical Algebra: Bibliography , 1994 .

[66]  C. J. Isham,et al.  A Topos Foundation for Theories of Physics: IV. Categories of Systems , 2008 .

[67]  Ieke Moerdijk,et al.  TOPOSES ARE COHOMOLOGICALLY EQUIVALENT TO SPACES , 1990 .

[68]  L. Bunce,et al.  The Mackey‐Gleason Problem for Vector Measures on Projections in Von Neumann Algebras , 1994 .

[69]  Klaus Keimel,et al.  The probabilistic powerdomain for stably compact spaces , 2004, Theor. Comput. Sci..

[70]  Hans F. de Groote On a canonical lattice structure on the effect algebra of a von Neumann algebra , 2004 .

[71]  Steven J. Vickers,et al.  Compactness in locales and in formal topology , 2006, Ann. Pure Appl. Log..

[72]  A. Connes,et al.  Noncommutative Geometry, Quantum Fields and Motives , 2007 .

[73]  C. J. Isham,et al.  A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory , 2008 .

[74]  N. P. Landsman MACROSCOPIC OBSERVABLES AND THE BORN RULE, I: LONG RUN FREQUENCIES , 2008, 0804.4849.

[75]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[76]  P. Johnstone,et al.  REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .

[77]  Peter Aczel,et al.  Aspects of general topology in constructive set theory , 2006, Ann. Pure Appl. Log..

[78]  Thierry Coquand,et al.  Integrals and valuations , 2008, J. Log. Anal..

[79]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[80]  Fred Richman Generalized real numbers in constructive mathematics , 1998 .

[81]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .

[82]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[83]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[84]  K. Fredenhagen,et al.  Communications in Mathematical Physics The Generally Covariant Locality Principle – A New Paradigm for Local Quantum Field Theory , 2022 .

[85]  John L. Bell,et al.  Toposes and local set theories - an introduction , 1988 .

[86]  Some Worlds of Quantum Theory , 2001, quant-ph/0105052.

[87]  C. J. Isham,et al.  A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .

[88]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[89]  C. J. Isham Topos theory and consistent histories: The internal logic of the set of all consistent sets , 1996 .

[90]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[91]  Steven Vickers,et al.  Localic completion of generalized metric spaces I , 2005 .

[92]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[93]  Bas Spitters,et al.  Bohrification of operator algebras and quantum logic , 2009, Synthese.

[94]  Francis Borceux,et al.  A Handbook of Categorical Algebra 3: Categories of sheaves , 1994 .

[95]  S. Buss,et al.  Entailment relations and distributive lattices , 2000 .

[96]  J. Aarnes Quasi-states on *-algebras , 1970 .