Low-loss composite photonic platform based on 2D semiconductor monolayers

[1]  Steven A. Miller,et al.  Large-scale optical phased array using a low-power multi-pass silicon photonic platform , 2020 .

[2]  Antonio D’Errico,et al.  Graphene-based integrated photonics for next-generation datacom and telecom , 2018, Nature Reviews Materials.

[3]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[4]  M. Lauermann,et al.  Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator , 2017, Optica.

[5]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[6]  A. Ferrari,et al.  Graphene–silicon phase modulators with gigahertz bandwidth , 2018 .

[7]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[8]  Frederic Boeuf,et al.  Efficient low-loss InGaAsP/Si hybrid MOS optical modulator , 2017, Nature Photonics.

[9]  Y. Wang,et al.  Excitons in atomically thin 2D semiconductors and their applications , 2017 .

[10]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[11]  Kenji Watanabe,et al.  Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons , 2017, Nature Photonics.

[12]  Haowei Peng,et al.  Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers. , 2017, Nano letters.

[13]  D. Bunandar,et al.  A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. , 2017, Nature nanotechnology.

[14]  M. Terrones,et al.  Transfer of monolayer TMD WS2 and Raman study of substrate effects , 2017, Scientific Reports.

[15]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[16]  E. Timurdogan,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2016, Nature Photonics.

[17]  J. Grossman,et al.  Optical and Electronic Properties of Two-Dimensional Layered Materials , 2017 .

[18]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[19]  T. Mueller,et al.  Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides , 2016 .

[20]  B. Jonker,et al.  Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence , 2015, Scientific Reports.

[21]  Alexey Chernikov,et al.  Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}. , 2015, Physical review letters.

[22]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[23]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[24]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[25]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[26]  Hao Hu,et al.  Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene-Silicon Microring Resonator. , 2015, Nano letters.

[27]  J. Hone,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014, 1610.04671.

[28]  M. S. Skolnick,et al.  Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities , 2014, Nano letters.

[29]  S. Jun,et al.  Crack-release transfer method of wafer-scale grown graphene onto large-area substrates. , 2014, ACS applied materials & interfaces.

[30]  Wim Bogaerts,et al.  Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices , 2014 .

[31]  Xiaodong Li,et al.  Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides , 2014, 1406.4569.

[32]  Timothy C. Berkelbach,et al.  Excitons in atomically thin transition-metal dichalcogenides , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[33]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[34]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[35]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[36]  E. Kaxiras,et al.  Electrically driven tuning of the dielectric constant in MoS2 layers. , 2013, ACS nano.

[37]  Ruitao Lv,et al.  Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. , 2013, ACS nano.

[38]  Jinzhong Yu,et al.  High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. , 2013, Optics express.

[39]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[40]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[41]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[42]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[43]  A. Morpurgo,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[44]  Hideaki Okayama,et al.  12.5-Gb/s operation with 0.29-V·cm V(π)L using silicon Mach-Zehnder modulator based-on forward-biased pin diode. , 2012, Optics express.

[45]  L. Coldren,et al.  Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. , 2011, Optics express.

[46]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[47]  Philippe Lyan,et al.  Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. , 2008, Optics express.

[48]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[49]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .