Production matrices

We translate the concept of succession rule and the ECO method into matrix notation, introducing the concept of a production matrix. Among other things, we show that certain operations on production matrices correspond to well-known operations on the numerical sequences determined by them.

[1]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[2]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[3]  Alberto Del Lungo,et al.  A methodology for plane tree enumeration , 1998, Discret. Math..

[4]  Renzo Pinzani,et al.  A set of well-defined operations on succession rules , 2000 .

[5]  Frank Harary,et al.  The enumeration of tree-like polyhexes † , 1970 .

[6]  Marilena Barnabei,et al.  Recursive matrices and umbral calculus , 1982 .

[7]  Luca Ferrari,et al.  A linear operator approach to succession rules , 2002 .

[8]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[9]  Louis W. Shapiro,et al.  Bijections and the Riordan group , 2003, Theor. Comput. Sci..

[10]  M. Cecilia Verri,et al.  Generating trees and proper Riordan Arrays , 2000, Discret. Math..

[11]  Michael S. Waterman,et al.  On some new sequences generalizing the Catalan and Motzkin numbers , 1979, Discret. Math..

[12]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[13]  Wen-Jin Woan,et al.  Generating Functions via Hankel and Stieltjes Matrices , 2000 .

[14]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[15]  Philippe Flajolet,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[16]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .

[17]  Elena Barcucci,et al.  Exhaustive generation of combinatorial objects by ECO , 2004, Acta Informatica.

[18]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[19]  de Ng Dick Bruijn,et al.  THE AVERAGE HEIGHT OF PLANTED PLANE TREES , 1972 .

[20]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[21]  M. Aigner Catalan and other numbers: a recurrent theme , 2001 .

[22]  Mireille Bousquet-Mélou,et al.  Generating functions for generating trees , 2002, Discret. Math..

[23]  Andrea Frosini,et al.  ECO Method and the Exhaustive Generation of Convex Polyominoes , 2003, DMTCS.

[24]  Martin Aigner,et al.  Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.

[25]  N. J. A. Sloane,et al.  Some canonical sequences of integers , 1995, math/0205301.

[26]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[27]  Julian West,et al.  Generating trees and forbidden subsequences , 1996, Discret. Math..

[28]  Alberto Del Lungo,et al.  Random Generation of Trees and Other Combinatorial Objects , 1999, Theor. Comput. Sci..

[29]  Renzo Pinzani,et al.  Approximating algebraic functions by means of rational ones , 2002, Theor. Comput. Sci..

[30]  Renzo Pinzani,et al.  An algebraic characterization of the set of succession rules , 2002, Theor. Comput. Sci..

[31]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..