Mitochondrial potassium transport: the K(+) cycle.

Potassium transport plays three distinct roles in mitochondria. Volume homeostasis to prevent excess matrix swelling is a housekeeping function that is essential for maintaining the structural integrity of the organelle. This function is mediated by the K(+)/H(+) antiporter and was first proposed by Peter Mitchell. Volume homeostasis to prevent excess matrix contraction is a recently discovered function that maintains a fully expanded matrix when diffusive K(+) influx declines due to membrane depolarization caused by high rates of electron transport. Maintaining matrix volume under these conditions is important because matrix contraction inhibits electron transport and also perturbs the structure-function of the intermembrane space (IMS). This volume regulation is mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Cell signaling functions to protect the cell from ischemia-reperfusion injury and also to trigger transcription of genes required for cell growth. This function depends on the ability of mitoK(ATP) opening to trigger increased mitochondrial production of reactive oxygen species (ROS). This review discusses the properties of the mitochondrial K(+) cycle that help to understand the basis of these diverse effects.

[1]  C. Nichols,et al.  Octameric Stoichiometry of the KATP Channel Complex , 1997, The Journal of general physiology.

[2]  V. Iacobazzi,et al.  Mitochondrial metabolite transporters. , 1996, Biochimica et biophysica acta.

[3]  G. Tusnády,et al.  Membrane topology distinguishes a subfamily of the ATP‐binding cassette (ABC) transporters , 1997, FEBS letters.

[4]  P. dos Santos,et al.  Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. , 2003, Biochimica et biophysica acta.

[5]  D. Deamer,et al.  Proton flux mechanisms in model and biological membranes , 1989, The Journal of Membrane Biology.

[6]  M. Klingenberg,et al.  Distribution of anions across the mitochondrial membrane. , 1970, The Biochemical journal.

[7]  W. Lederer,et al.  ATP dependence of KATP channel kinetics in isolated membrane patches from rat ventricle. , 1991, Biophysical journal.

[8]  Y. Horio,et al.  Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea‐sensitive but ATP‐insensitive K+ channel. , 1997, The Journal of physiology.

[9]  S. K. Ratkje,et al.  On the nature of ion leaks in energy-transducing membranes. , 1989, Biochimica et biophysica acta.

[10]  K. Garlid The state of water in biological systems. , 2000, International review of cytology.

[11]  G. Grover,et al.  Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. , 1989, The Journal of pharmacology and experimental therapeutics.

[12]  F. Ashcroft,et al.  ATP-sensitive K+ channels and insulin secretion: their role in health and disease , 1999, Diabetologia.

[13]  S. Seino,et al.  Kir6.1: a possible subunit of ATP-sensitive K+ channels in mitochondria. , 1997, Biochemical and biophysical research communications.

[14]  M. Douglas,et al.  Mitochondrial cation-hydrogen ion exchange. Sodium selective transport by mitochondria and submitochondrial particles. , 1974, The Journal of biological chemistry.

[15]  G. Lukács,et al.  Characterization of the mitochondrial Na+-H+ exchange. The effect of amiloride analogues. , 1988, Biochimica et biophysica acta.

[16]  A. J. Hulbert,et al.  Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. , 1996, The American journal of physiology.

[17]  Yun Lu,et al.  Effect of Leader Peptides on the Permeability of Mitochondria* , 1997, The Journal of Biological Chemistry.

[18]  A. Vianello,et al.  Modulation of a Plant Mitochondrial K+ATP Channel and Its Involvement in Cytochrome c Release , 2002, Journal of bioenergetics and biomembranes.

[19]  J. Bryan,et al.  A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ Channels , 1996, Neuron.

[20]  Y. Jan,et al.  A New ER Trafficking Signal Regulates the Subunit Stoichiometry of Plasma Membrane KATP Channels , 1999, Neuron.

[21]  D. L. Harris,et al.  The osmotic behavior and permeability to non-electrolytes of mitochondria. , 1955, Archives of biochemistry and biophysics.

[22]  M. Numata,et al.  Identification of a Mitochondrial Na+/H+Exchanger* , 1998, The Journal of Biological Chemistry.

[23]  K D Garlid,et al.  On the mechanism of regulation of the mitochondrial K+/H+ exchanger. , 1980, The Journal of biological chemistry.

[24]  F. Artunc,et al.  Coexpression with the inward rectifier K(+) channel Kir6.1 increases the affinity of the vascular sulfonylurea receptor SUR2B for glibenclamide. , 1999, Molecular pharmacology.

[25]  C. D. Stoner,et al.  OSMOTICALLY-INDUCED ALTERATIONS IN VOLUME AND ULTRASTRUCTURE OF MITOCHONDRIA ISOLATED FROM RAT LIVER AND BOVINE HEART , 1969, The Journal of cell biology.

[26]  M. Klingenberg Metabolite transport in mitochondria: an example for intracellular membrane function. , 1970, Essays in biochemistry.

[27]  K. Kunjilwar,et al.  Association and Stoichiometry of KATP Channel Subunits , 1997, Neuron.

[28]  Y. Horio,et al.  A Novel Sulfonylurea Receptor Forms with BIR (Kir6.2) a Smooth Muscle Type ATP-sensitive K+ Channel* , 1996, The Journal of Biological Chemistry.

[29]  P. dos Santos,et al.  Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. , 2002, American journal of physiology. Heart and circulatory physiology.

[30]  E. Murphy,et al.  Diazoxide-Induced Cardioprotection Requires Signaling Through a Redox-Sensitive Mechanism , 2001, Circulation research.

[31]  N. Di Fonzo,et al.  The Existence of the K+ Channel in Plant Mitochondria* , 1999, The Journal of Biological Chemistry.

[32]  M. Rigoulet,et al.  Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore? , 1998, Journal of bioenergetics and biomembranes.

[33]  A. Beavis,et al.  Evidence for the allosteric regulation of the mitochondrial K+/H+ antiporter by matrix protons. , 1990, The Journal of biological chemistry.

[34]  A. Beavis,et al.  Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume. , 1985, The Journal of biological chemistry.

[35]  Jean-Raymond Abrial,et al.  On B , 1998, B.

[36]  M. Permutt,et al.  Adenosine Diphosphate as an Intracellular Regulator of Insulin Secretion , 1996, Science.

[37]  E. Weibel,et al.  Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study , 1986, The Journal of cell biology.

[38]  Theo Wallimann,et al.  Structure of mitochondrial creatine kinase , 1996, Nature.

[39]  S. Fleischer,et al.  The Molecular Biology of Membranes , 1978, Springer US.

[40]  G. Brierley,et al.  Energy-dependent contraction of swollen heart mitochondria--activation by butacaine. , 1979, Archives of biochemistry and biophysics.

[41]  M. Dunne Protein phosphorylation is required for diazoxide to open ATP‐sensitive potassium channels in insulin (RINm5F) secreting cells , 1989, FEBS letters.

[42]  A. Beavis On the inhibition of the mitochondrial inner membrane anion uniporter by cationic amphiphiles and other drugs. , 1989, The Journal of biological chemistry.

[43]  M. Schwanstecher,et al.  Identification of the Potassium Channel Opener Site on Sulfonylurea Receptors* , 1999, The Journal of Biological Chemistry.

[44]  A. Kowaltowski,et al.  Identification and Properties of a Novel Intracellular (Mitochondrial) ATP-sensitive Potassium Channel in Brain* , 2001, The Journal of Biological Chemistry.

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  T. Higuti,et al.  ATP-sensitive K+ channel in the mitochondrial inner membrane , 1991, Nature.

[47]  B. Trump,et al.  Pathobiology of cell membranes , 1975 .

[48]  S. Grinstein,et al.  Na+/H+ Exchangers of Mammalian Cells* , 1997, The Journal of Biological Chemistry.

[49]  W. Lederer,et al.  Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. , 1991, The American journal of physiology.

[50]  T. Farooqui,et al.  K+/H+ antiport in heart mitochondria. , 1984, Journal of Biological Chemistry.

[51]  M. Rigoulet,et al.  Stimulation of oxidative phosphorylation by electrophoretic K+ entry associated to electroneutral K+/H+ exchange in yeast mitochondria. , 1995, Biochimica et biophysica acta.

[52]  Stilbene disulfonates block ATP-sensitive K+ channels in guinea pig ventricular myocytes , 1993, The Journal of Membrane Biology.

[53]  J. Chappell Systems used for the transport of substrates into mitochondria. , 1968, British medical bulletin.

[54]  J. Clement,et al.  Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. , 1995, Science.

[55]  K. Rydzyński,et al.  Stereologic studies on mitochondrial configuration in different organs of the rat , 1979, Cell and Tissue Research.

[56]  A. Noma,et al.  ATP-regulated K+ channels in cardiac muscle , 1983, Nature.

[57]  P. Diolez,et al.  Correlation between ATP synthesis, membrane potential and oxidation rate in potato mitochondria , 1985 .

[58]  D. Sanadi,et al.  Reconstitution of transmembrane K+ transport with a 53 kilodalton mitochondrial protein. , 1988, Biochemical and biophysical research communications.

[59]  M. L. Le Beau,et al.  Cloning, Tissue Expression, and Chromosomal Localization of SUR2, the Putative Drug-Binding Subunit of Cardiac, Skeletal Muscle, and Vascular KATP Channels , 1996, Diabetes.

[60]  C. Hales,et al.  Dual effects of diazoxide on ATP‐K+ currents recorded from an insulin‐secreting cell line , 1989, British journal of pharmacology.

[61]  Monica Nordberg,et al.  Pharmacology , 1941, The Indian Medical Gazette.

[62]  S. Seino,et al.  Subunit stoichiometry of the pancreatic β‐cell ATP‐sensitive K+ channel , 1997 .

[63]  P. Aronson Kinetic properties of the plasma membrane Na+-H+ exchanger. , 1985, Annual review of physiology.

[64]  G. Brierley,et al.  Energy-dependent exchange of K+ in heart mitochondria. K+ influx. , 1977, Archives of biochemistry and biophysics.

[65]  F. Ashcroft,et al.  The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells. , 1996, The Journal of physiology.

[66]  A. J. Clifford,et al.  BIOCHIMICA ET BIOPHYSICA ACTA , 2022 .

[67]  K. Roberg,et al.  Molecular cloning and characterization of a novel liver-specific transport protein. , 1994, Journal of cell science.

[68]  N. W. Davies,et al.  ATP-dependent potassium channels of muscle cells: Their properties, regulation, and possible functions , 1991, Journal of bioenergetics and biomembranes.

[69]  R. A. Nakashima,et al.  Quinine inhibition of Na+ and K+ transport provides evidence for two cation/H+ exchangers in rat liver mitochondria. , 1982, The Journal of biological chemistry.

[70]  Keith D. Garlid,et al.  Opening mitochondrial KATP in the heart – what happens, and what does not happen , 2000, Basic Research in Cardiology.

[71]  G. Brierley The uptake and extrusion of monovalent cations by isolated heart mitochondria , 1976, Molecular and Cellular Biochemistry.

[72]  Jiang Tian,et al.  Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial KATP channels , 2004, Molecular and Cellular Biochemistry.

[73]  C. Higgins,et al.  The ABC of channel regulation , 1995, Cell.

[74]  M. Horie,et al.  Blockade of cardiac ATP-sensitive K+ channel by cibenzoline targets its pore-forming subunit. , 2000, Journal of cardiovascular pharmacology.

[75]  A. Halestrap,et al.  Matrix volume measurements challenge the existence of diazoxide/glibencamide‐sensitive KATP channels in rat mitochondria , 2003, The Journal of physiology.

[76]  A. Kowaltowski,et al.  Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. , 2001, American journal of physiology. Heart and circulatory physiology.

[77]  V. Yarov-Yarovoy,et al.  State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. , 1998, The Journal of biological chemistry.

[78]  A. Beavis,et al.  On the regulation of K+ uniport in intact mitochondria by adenine nucleotides and nucleotide analogs. , 1993, The Journal of biological chemistry.

[79]  G. Mcpherson,et al.  Antagonism by lipophilic quaternary ions of the K+ channel opener, levcromakalim, in vascular smooth muscle , 1994, British journal of pharmacology.

[80]  S. Prieto,et al.  The nature and regulation of the ATP-induced anion permeability in Saccharomyces cerevisiae mitochondria. , 1996, Archives of biochemistry and biophysics.

[81]  G. Lukács,et al.  Characterization of the mitochondrial Na+H+ exchange. The effect of amiloride analogues , 1988 .

[82]  G. Grover,et al.  ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. , 2000, Journal of molecular and cellular cardiology.

[83]  K. Krab,et al.  New Insights into the Regulation of Plant Succinate Dehydrogenase , 2001, The Journal of Biological Chemistry.

[84]  V. Yarov-Yarovoy,et al.  The nucleotide regulatory sites on the mitochondrial KATP channel face the cytosol. , 1997, Biochimica et biophysica acta.

[85]  P. Mitchell,et al.  Translocation of some anions cations and acids in rat liver mitochondria. , 1969, European journal of biochemistry.

[86]  M. Futai,et al.  Sodium/Proton antiporter of rat liver mitochondria , 1980, FEBS letters.

[87]  ATP-dependent potassium channel from rat liver mitochondria: inhibitory analysis, channel clusterization. , 1997, Membrane & cell biology.

[88]  A. Beavis,et al.  Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane. , 1985, The Journal of biological chemistry.

[89]  J. Bryan,et al.  Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K(+) channels. , 1999, Biochimica et biophysica acta.

[90]  V. Yarov-Yarovoy,et al.  The Mitochondrial K Channel as a Receptor for Potassium Channel Openers (*) , 1996, The Journal of Biological Chemistry.

[91]  K. Garlid Unmasking the mitochondrial K/H exchanger: tetraethylammonium-induced K+-loss. , 1979, Biochemical and biophysical research communications.

[92]  Frances M. Ashcroft,et al.  Correlating structure and function in ATP-sensitive K+ channels , 1998, Trends in Neurosciences.

[93]  T. Obata,et al.  Block of cardiac ATP-sensitive K(+) channels reduces hydroxyl radicals in the rat myocardium. , 2000, Archives of biochemistry and biophysics.

[94]  P. Ježek,et al.  Reconstitution and partial purification of the Na(+)-selective Na+/H+ antiporter of beef heart mitochondria. , 1991, The Journal of biological chemistry.

[95]  S. Seino,et al.  Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. , 1997, FEBS letters.

[96]  C. Moreau,et al.  A transmembrane domain of the sulfonylurea receptor mediates activation of ATP-sensitive K(+) channels by K(+) channel openers. , 1999, Molecular pharmacology.

[97]  D. W. Jung,et al.  Effects of quinine on K+ transport in heart mitochondria , 1984, Journal of bioenergetics and biomembranes.

[98]  G. Mironova,et al.  Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. , 1992, The Journal of biological chemistry.

[99]  F. Ashcroft,et al.  Phentolamine block of KATP channels is mediated by Kir6.2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[100]  C. Nichols,et al.  Inward rectifier potassium channels. , 1997, Annual review of physiology.

[101]  K. Garlid Cation transport in mitochondria--the potassium cycle. , 1996, Biochimica et biophysica acta.

[102]  M. Numata,et al.  Molecular Cloning and Characterization of a Novel (Na+,K+)/H+ Exchanger Localized to the trans-Golgi Network* , 2001, The Journal of Biological Chemistry.

[103]  John J. Lemasters,et al.  Integration of Mitochondrial Function , 1988, Springer US.

[104]  R. Cockrell Mitochondrial Cation-Hydrogen Ion Exchange SODIUM , 2003 .

[105]  T. Wallimann,et al.  Octamers of Mitochondrial Creatine Kinase Isoenzymes Differ in Stability and Membrane Binding* , 2000, The Journal of Biological Chemistry.

[106]  A. Vianello,et al.  Cyclosporin A Induces the Opening of a Potassium-Selective Channel in Higher Plant Mitochondria , 2001, Journal of bioenergetics and biomembranes.

[107]  R. S. Kaplan Structure and Function of Mitochondrial Anion Transport Proteins , 2001, The Journal of Membrane Biology.

[108]  P. Ježek,et al.  Purification of a reconstitutively active K+/H+ antiporter from rat liver mitochondria. , 1990, The Journal of biological chemistry.

[109]  D. Diresta,et al.  K+-H+ exchange and volume homeostasis in brown adipose tissue mitochondria. , 1986, The American journal of physiology.

[110]  Jiang Tian,et al.  Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial K ATP channels , 2003 .

[111]  P. Ježek,et al.  Reconstitution of the beef heart and rat liver mitochondrial K+/H+ (Na+/H+) antiporter. Quantitation of K+ transport with the novel fluorescent probe, PBFI. , 1990, The Journal of biological chemistry.

[112]  M. Rigoulet,et al.  Minireview: Characterization of the Yeast Mitochondria Unselective Channel: A Counterpart to the Mammalian Permeability Transition Pore? , 1998 .

[113]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[114]  G. Azzone,et al.  Electroneutral H+-K+ exchange in liver mitochondria. Regulation by membrane potential. , 1983, Biochimica et biophysica acta.

[115]  G. Brierley,et al.  On the mechanism of A23187-induced potassium efflux in rat liver mitochondria. , 1980, The Journal of biological chemistry.

[116]  P. Richardson,et al.  Glucose‐receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits , 1999, The Journal of physiology.

[117]  W. H. Martin,et al.  Identification of an 82,000-dalton protein responsible for K+/H+ antiport in rat liver mitochondria. , 1984, The Journal of biological chemistry.

[118]  O. Larsson,et al.  Activation of the ATP-sensitive K Channel by Long Chain Acyl-CoA , 1996, The Journal of Biological Chemistry.

[119]  D. Diresta,et al.  On the mechanism by which dicyclohexylcarbodiimide and quinine inhibit K+ transport in rat liver mitochondria. , 1986, The Journal of biological chemistry.

[120]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[121]  J. Orlowski Na+/H+ Exchangers: Molecular Diversity and Relevance to Heart , 1999 .

[122]  F. Ashcroft,et al.  Molecular Analysis of ATP-sensitive K Channel Gating and Implications for Channel Inhibition by ATP , 1998, The Journal of general physiology.

[123]  Y. Kurachi,et al.  Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers. , 2000, Pharmacology & therapeutics.

[124]  R. A. Nakashima,et al.  On the relative roles of Ca2+ and Mg2+ in regulating the endogenous K+/H+ exchanger of rat liver mitochondria. , 1982, The Journal of biological chemistry.

[125]  G. Brierley,et al.  Energy-dependent contraction of swollen heart mitochondria. , 1977, The Journal of biological chemistry.

[126]  X. Sun,et al.  Mitochondrial cation transport systems. , 1995, Methods in enzymology.

[127]  A. Goffeau,et al.  Electrogenic proton ejection coupled to electron transport through the energy-conserving site 2 and K+/H+ exchange in yeast mitochondria. , 1981, Biochimica et biophysica acta.

[128]  G. Mironova,et al.  Reconstitution of the Mitochondrial ATP-Dependent Potassium Channel into Bilayer Lipid Membrane1 , 1999, Journal of bioenergetics and biomembranes.

[129]  J. Gamble Potassium binding and oxidative phosphorylation in mitochondria and mitochondrial fragments. , 1957, The Journal of biological chemistry.

[130]  V. Yarov-Yarovoy,et al.  Inhibition of the Mitochondrial KATP Channel by Long-chain Acyl-CoA Esters and Activation by Guanine Nucleotides* , 1996, Journal of Biological Chemistry.

[131]  S. Prieto,et al.  Activation by ATP of a proton-conducting pathway in yeast mitochondria. , 1992, European journal of biochemistry.

[132]  F. Ashcroft,et al.  Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor , 1997, Nature.

[133]  A. Schoolwerth,et al.  Metabolite transport in mitochondria. , 1979, Annual review of biochemistry.

[134]  G. Mironova,et al.  Regulation of mitochondrial KATP channel by redox agents. , 1999, Biochimica et biophysica acta.

[135]  M. Smith,et al.  Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. , 1997, Circulation research.

[136]  F. Ashcroft,et al.  Interaction of stilbene disulphonates with cloned KATP channels , 2001, British journal of pharmacology.

[137]  M. Rigoulet,et al.  ATP-induced unspecific channel in yeast mitochondria. , 1994, The Journal of biological chemistry.

[138]  A. Babenko,et al.  A view of sur/KIR6.X, KATP channels. , 1998, Annual review of physiology.

[139]  A. Azzi,et al.  The effect of N,N'-dicyclohexylcarbodiimide on enzymes of bioenergetic relevance. , 1984, Biochimica et biophysica acta.

[140]  N. Standen,et al.  ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. , 1997, Physiological reviews.

[141]  R. Trumbly,et al.  On the regulation of Na+/H+ and K+/H+ antiport in yeast mitochondria: evidence for the absence of an Na(+)-selective Na+/H+ antiporter. , 1993, Biochimica et biophysica acta.

[142]  D. Diresta,et al.  Kinetics of inhibition and binding of dicyclohexylcarbodiimide to the 82,000-dalton mitochondrial K+/H+ antiporter. , 1986, The Journal of biological chemistry.

[143]  K. Garlid Unmasking the mitochondrial K/H exchanger: swelling-induced K+-loss. , 1978, Biochemical and biophysical research communications.

[144]  G. Brierley PASSIVE PERMEABILITY AND ENERGY‐LINKED ION MOVEMENTS IN ISOLATED HEART MITOCHONDRIA * , 1974, Annals of the New York Academy of Sciences.

[145]  K. Garlid Sodium/proton antiporters in the mitochondrial inner membrane. , 1988, Advances in experimental medicine and biology.

[146]  J. Downey,et al.  Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells , 2002, Basic Research in Cardiology.

[147]  J. Bryan,et al.  Potassium channel openers require ATP to bind to and act through sulfonylurea receptors , 1998, The EMBO journal.

[148]  D. L. Harris,et al.  Some observations on the photometric estimation of mitochondrial volume. , 1958, Biochimica et biophysica acta.

[149]  G. Mironova,et al.  [Protein from beef heart mitochondria inducing the potassium channel conductivity of bilayer lipid membrane]. , 1981, Biofizika.

[150]  P. Mitchell CHEMIOSMOTIC COUPLING IN OXIDATIVE AND PHOTOSYNTHETIC PHOSPHORYLATION , 1966, Biological reviews of the Cambridge Philosophical Society.

[151]  F. Mahdi,et al.  Purification and reconstitution of the mitochondrial K+ channel ☆ , 1991 .