Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers.

[1]  Peter M. Elias,et al.  The skin barrier as an innate immune element , 2007, Seminars in Immunopathology.

[2]  M. Neurath,et al.  Epithelial NEMO links innate immunity to chronic intestinal inflammation , 2007, Nature.

[3]  W. Strober Unraveling Gut Inflammation , 2006, Science.

[4]  A. Murphy,et al.  Resistin-like molecule beta regulates innate colonic function: barrier integrity and inflammation susceptibility. , 2006, The Journal of allergy and clinical immunology.

[5]  J. Genschel,et al.  Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? , 2005, Gut.

[6]  J. Schröder,et al.  Antimicrobial skin peptides and proteins , 2006, Cellular and Molecular Life Sciences CMLS.

[7]  R. Pfundt,et al.  High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. , 2005, The Journal of investigative dermatology.

[8]  F. Niyonsaba,et al.  Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents beta-defensins, cathelicidin LL-37 and lysozyme. , 2005, Journal of dermatological science.

[9]  F. Granath,et al.  UVB upregulates the antimicrobial protein hCAP18 mRNA in human skin. , 2005, The Journal of investigative dermatology.

[10]  M. Zasloff Sunlight, vitamin D, and the innate immune defenses of the human skin. , 2005, The Journal of investigative dermatology.

[11]  P. Elias,et al.  Interactions among stratum corneum defensive functions , 2005, Experimental dermatology.

[12]  P. Elias Stratum corneum defensive functions: an integrated view. , 2005, The Journal of investigative dermatology.

[13]  R. Lehrer In defense of skin. , 2005, The Journal of investigative dermatology.

[14]  H. Törmä,et al.  Vitamin D induces the antimicrobial protein hCAP18 in human skin. , 2005, The Journal of investigative dermatology.

[15]  T. Ganz,et al.  Differential Regulation of β-Defensin Expression in Human Skin by Microbial Stimuli1 , 2005, The Journal of Immunology.

[16]  J. Schröder,et al.  Psoriatic scales: a promising source for the isolation of human skin‐derived antimicrobial proteins , 2005, Journal of leukocyte biology.

[17]  A. Di Nardo,et al.  Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. , 2005, The Journal of investigative dermatology.

[18]  P. Elias,et al.  Functional consequences of a neutral pH in neonatal rat stratum corneum. , 2004, The Journal of investigative dermatology.

[19]  Tobias Pincock Fitzpatrick's Dermatology in General Medicine , 2003 .

[20]  Dong-Kuk Lee,et al.  Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. , 2003, Biochemistry.

[21]  T. Ganz,et al.  In human epidermis, β-defensin 2 is packaged in lamellar bodies , 2003 .

[22]  M. Ståhle-Bäckdahl,et al.  The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. , 2003, The Journal of investigative dermatology.

[23]  T. Ganz,et al.  In human epidermis, beta-defensin 2 is packaged in lamellar bodies. , 2003, Experimental and molecular pathology.

[24]  Takaaki Ohtake,et al.  Biology and clinical relevance of naturally occurring antimicrobial peptides. , 2002, The Journal of allergy and clinical immunology.

[25]  P. Elias,et al.  Stratum corneum pH: Formation and Function of the ‘Acid Mantle’ , 2002, Exogenous Dermatology.

[26]  C. Garbe,et al.  Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. , 2002, The Journal of investigative dermatology.

[27]  Tomas Ganz,et al.  Endogenous antimicrobial peptides and skin infections in atopic dermatitis. , 2002, The New England journal of medicine.

[28]  M. Sakaguchi,et al.  Dynamic alteration of human β-defensin 2 localization from cytoplasm to intercellular space in psoriatic skin , 2002, Journal of Molecular Medicine.

[29]  P. Elias,et al.  Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity. , 2002, Journal of the American Academy of Dermatology.

[30]  P. Elias,et al.  Basis for the permeability barrier abnormality in lamellar ichthyosis , 2002, Experimental dermatology.

[31]  P. Elias,et al.  The aged epidermal permeability barrier: basis for functional abnormalities. , 2002, Clinics in geriatric medicine.

[32]  Christina H. Park,et al.  Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. , 2002, The Journal of investigative dermatology.

[33]  J. Travers,et al.  Decreased IL-15 May Contribute to Elevated IgE and Acute Inflammation in Atopic Dermatitis1 , 2002, The Journal of Immunology.

[34]  Nikolaus Blin,et al.  Dermcidin: a novel human antibiotic peptide secreted by sweat glands , 2001, Nature Immunology.

[35]  Takaaki Ohtake,et al.  Innate antimicrobial peptide protects the skin from invasive bacterial infection , 2001, Nature.

[36]  F. Dhabhar,et al.  Stress-induced changes in skin barrier function in healthy women. , 2001, The Journal of investigative dermatology.

[37]  J. Schröder Isolation and purification of chemokines from natural sources , 2001, Molecular Biotechnology.

[38]  M. Chren,et al.  Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders. , 2001, Archives of dermatology.

[39]  Thomas D. Schmittgen,et al.  Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. , 2000, Analytical biochemistry.

[40]  Thomas D. Schmittgen,et al.  Characterization of nitric oxide production following isolation of rat hepatocytes. , 2000, Toxicological sciences : an official journal of the Society of Toxicology.

[41]  U. Rassner,et al.  Coordinate assembly of lipids and enzyme proteins into epidermal lamellar bodies. , 1999, Tissue & cell.

[42]  J. Schröder Epithelial antimicrobial peptides: innate local host response elements , 1999, Cellular and Molecular Life Sciences CMLS.

[43]  J. Winer,et al.  Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. , 1999, Analytical biochemistry.

[44]  R. Gallo,et al.  Antimicrobial peptides: an emerging concept in cutaneous biology. , 1998, The Journal of investigative dermatology.

[45]  V. Bafna,et al.  Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. , 1998, The Journal of clinical investigation.

[46]  R. Bals,et al.  The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  U. Rassner,et al.  The secretory granular cell: the outermost granular cell as a specialized secretory cell. , 1998, The journal of investigative dermatology. Symposium proceedings.

[48]  M. Zasloff,et al.  Expression of natural peptide antibiotics in human skin , 1997, The Lancet.

[49]  P. Elias,et al.  Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier. , 1997, The Journal of clinical investigation.

[50]  H. Wigzell,et al.  The Expression of the Gene Coding for the Antibacterial Peptide LL-37 Is Induced in Human Keratinocytes during Inflammatory Disorders* , 1997, The Journal of Biological Chemistry.

[51]  P. Elias,et al.  Stratum corneum structure and function correlates with phenotype in psoriasis. , 1996, The Journal of investigative dermatology.

[52]  P. Elias,et al.  The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. , 1995, The Journal of clinical investigation.

[53]  P. Elias,et al.  Cutaneous permeability barrier disruption increases fatty acid synthetic enzyme activity in the epidermis of hairless mice. , 1995, The Journal of investigative dermatology.

[54]  P. Elias,et al.  Permeability barrier requirements regulate epidermal beta-glucocerebrosidase. , 1994, Journal of lipid research.

[55]  P. Elias,et al.  Barrier function regulates epidermal lipid and DNA synthesis , 1993, The British journal of dermatology.

[56]  M. Fartasch,et al.  Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in human epidermis: an ultrastructural study , 1993, The British journal of dermatology.

[57]  P. Klotman,et al.  A PCR method for the quantitative assessment of mRNA for laminin A, B1, and B2 chains. , 1992, Kidney international.

[58]  P. Elias,et al.  Lamellar body secretory response to barrier disruption. , 1992, The Journal of investigative dermatology.

[59]  H. Shinefield,et al.  Antimicrobial activity of sphingosines. , 1992, The Journal of investigative dermatology.

[60]  P. Elias,et al.  Regulation of epidermal sphingolipid synthesis by permeability barrier function. , 1991, Journal of lipid research.

[61]  P. Elias,et al.  Barrier function regulates epidermal DNA synthesis. , 1991, The Journal of clinical investigation.

[62]  S. White,et al.  Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. , 1991, The Journal of investigative dermatology.

[63]  P. Elias,et al.  The lovastatin-treated rodent: a new model of barrier disruption and epidermal hyperplasia. , 1991, The Journal of investigative dermatology.

[64]  K. Feingold The regulation and role of epidermal lipid synthesis. , 1991, Advances in lipid research.

[65]  P. Elias,et al.  Structural and lipid biochemical correlates of the epidermal permeability barrier. , 1991, Advances in lipid research.

[66]  D. Bikle,et al.  Epidermal vitamin D metabolism, function, and regulation. , 1991, Advances in lipid research.

[67]  P. Elias,et al.  Transepidermal water loss: the signal for recovery of barrier structure and function. , 1989, Journal of lipid research.

[68]  P. Elias,et al.  Lipid content and lipid type as determinants of the epidermal permeability barrier. , 1989, Journal of lipid research.

[69]  P. Elias,et al.  In vitro and in vivo antistaphylococcal activity of human stratum corneum lipids. , 1988, Archives of dermatology.

[70]  R. Isseroff,et al.  Lamellar body-enriched fractions from neonatal mice: preparative techniques and partial characterization. , 1985, The Journal of investigative dermatology.

[71]  P. Elias,et al.  Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. , 1985, The Journal of investigative dermatology.

[72]  P. Elias,et al.  Isolation of lamellar bodies from neonatal mouse epidermis by selective sequential filtration. , 1983, Science.

[73]  P. Elias,et al.  Epidermal lipids, barrier function, and desquamation. , 1983, The Journal of investigative dermatology.

[74]  P. Elias,et al.  Retinoid effects on epidermal structure, differentiation, and permeability. , 1981, Laboratory investigation; a journal of technical methods and pathology.

[75]  P. Elias,et al.  The permeability barrier in mammalian epidermis , 1975, The Journal of cell biology.