Using Neural Networks and Genetic Algorithms as Heuristics for NP-Complete Problems

Paradigms for using neural networks (NNs) and genetic algorithms (GAs) to heuristically solve boolean satisfiability (SAT) problems are presented. Since SAT is NP-Complete, any other NP-Complete problem can be transformed into an equivalent SAT problem in polynomial time, and solved via either paradigm. This technique is illustrated for hamiltonian circuit (HC) problems.

[1]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[2]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[7]  Paul Walton Purdom,et al.  An Empirical Comparison of Backtracking Algorithms , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Derek Smith,et al.  Bin Packing with Adaptive Search , 1985, ICGA.

[11]  Lawrence Davis,et al.  Job Shop Scheduling with Genetic Algorithms , 1985, ICGA.

[12]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[13]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[14]  John J. Grefenstette,et al.  Genetic Search with Approximate Function Evaluation , 1985, ICGA.

[15]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[16]  David H. Ackley,et al.  A Connectionist Algorithm for Genetic Search , 1985, ICGA.

[17]  Kenneth A. De Jong,et al.  Genetic algorithms: A 10 Year Perspective , 1985, ICGA.

[18]  John V. Franco,et al.  On the Probabilistic Performance of Algorithms for the Satisfiability Problem , 1986, Inf. Process. Lett..

[19]  L. Darrell Whitley,et al.  Using Reproductive Evaluation to Improve Genetic Search and Heuristic Discovery , 1987, ICGA.

[20]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[21]  Erik D. Goodman,et al.  Genetic Learning Procedures in Distributed Environments , 1987, ICGA.

[22]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[23]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[24]  David E. Goldberg,et al.  An Analysis of Reproduction and Crossover in a Binary-Coded Genetic Algorithm , 1987, ICGA.

[25]  Kathryn Di Benigno JAYCOR Work in Support of the Navy Center for Applied Research in Artificial Intelligence , 1987 .

[26]  M. Dyer,et al.  Toward the Evolution of Symbols , 1987, ICGA.

[27]  Gunar E. Liepins,et al.  Greedy Genetics , 1987, ICGA.

[28]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[29]  Dana S. Richards,et al.  Punctuated Equilibria: A Parallel Genetic Algorithm , 1987, ICGA.

[30]  Kenneth A. De Jong,et al.  On Using Genetic Algorithms to Search Program Spaces , 1987, ICGA.

[31]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[32]  David E. Goldberg,et al.  Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy , 1987, ICGA.

[33]  George G. Robertson,et al.  Parallel Implementation of Genetic Algorithms in a Classifier Rystem , 1987, ICGA.

[34]  Dirk Van Gucht,et al.  Incorporating Heuristic Information into Genetic Search , 1987, International Conference on Genetic Algorithms.

[35]  John J. Grefenstette,et al.  A Parallel Genetic Algorithm , 1987, ICGA.

[36]  Riva Wenig Bickel,et al.  Tree Structured Rules in Genetic Algorithms , 1987, ICGA.

[37]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[38]  Reiko Tanese,et al.  Parallel Genetic Algorithms for a Hypercube , 1987, ICGA.

[39]  Allen Van Gelder,et al.  A Satisfiability Tester for Non-clausal Propositional Calculus , 1984, Inf. Comput..

[40]  James L. McClelland Explorations In Parallel Distributed Processing , 1988 .

[41]  Kenneth A. De Jong,et al.  Using Genetic Algorithms to Solve NP-Complete Problems , 1989, ICGA.

[42]  Emile H. L. Aarts,et al.  Combinatorial Optimization on a Boltzmann Machine , 1989, J. Parallel Distributed Comput..

[43]  J. P. Gunn,et al.  A derivative of the Hopfield-Tank neural network model that reliably solves the traveling salesman problem , 1989, International 1989 Joint Conference on Neural Networks.

[44]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[45]  Edward Tsang,et al.  Solving constraint satisfaction problems using neural networks , 1991 .

[46]  William M. Spears,et al.  An Artificial Intelligence Approach to Analog Systems Diagnosis , 1991 .