Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance

[1]  Yury Gogotsi,et al.  Mxenes: A New Family of Two-Dimensional Materials and Its Application As Electrodes for Li and Na-Ion Batteries , 2015 .

[2]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[3]  Li Li,et al.  Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. , 2014, Nanoscale.

[4]  Mischa Bonn,et al.  Liquid flow along a solid surface reversibly alters interfacial chemistry , 2014, Science.

[5]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[6]  Baozhong Liu,et al.  Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. , 2014, Journal of the American Chemical Society.

[7]  Kevin M. Cook,et al.  Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films , 2014, Chemistry of materials : a publication of the American Chemical Society.

[8]  Y. Gogotsi,et al.  Two‐Dimensional Materials: 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials (Adv. Mater. 7/2014) , 2014 .

[9]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[10]  Y. Nie,et al.  Surface Al Leached Ti3AlC2 Substituting Carbon for Catalyst Support Served in a Harsh Corrosive Electrochemical System , 2014 .

[11]  Michel W. Barsoum,et al.  MAX Phases: Properties of Machinable Ternary Carbides and Nitrides , 2013 .

[12]  Wei Lv,et al.  Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors , 2013, Scientific Reports.

[13]  Changsheng Li,et al.  Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2 , 2013 .

[14]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[15]  R. Ruoff,et al.  High‐Volumetric Performance Aligned Nano‐Porous Microwave Exfoliated Graphite Oxide‐based Electrochemical Capacitors , 2013, Advanced materials.

[16]  Ziqi Tan,et al.  Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes , 2013 .

[17]  Chi Cheng,et al.  Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage , 2013, Science.

[18]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[19]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[20]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[21]  Y. Gogotsi,et al.  Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid , 2013 .

[22]  A. L. Ivanovskii,et al.  Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2−xNx(OH)2 from DFTB calculations , 2013, 1304.1673.

[23]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[24]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[25]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[26]  Inhwa Jung,et al.  Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. , 2008, Nano letters.

[27]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[28]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[29]  Karen E. Swider-Lyons,et al.  Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering , 2002 .

[30]  B. Smit,et al.  Why clays swell , 2002 .

[31]  B. Conway Electrochemical Capacitors Based on Pseudocapacitance , 1999 .

[32]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[33]  Tor Løken,et al.  The shearing behaviour of clays , 1989 .