How a Pareto frontier complements scenario projections in land use change impact assessment

Abstract To evaluate the sustainability of potential agricultural land developments, scenario projections with land use change models are often combined with environmental impact assessments. Although this allows inter-scenario comparison of impacts, it does not permit interpretation of scenarios in the light of theoretically optimal impacts. A Pareto frontier provides this information. We demonstrate this for ethanol production in Goias, Brazil, in 2030. For a Business-as-Usual scenario projection, the spatial configuration, production costs, and GHG emissions of the production chain are compared with those obtained from spatial optimization and summarized by the Pareto frontier. Projected production costs are 729 $/m 3 ethanol, with GHG emissions of 40 kg CO 2 -eq/m 3 ethanol. The Pareto frontier indicates an improvement potential of ∼50 $/m 3 ethanol when keeping emissions fixed, or ∼250 kg CO 2 -eq/m 3 ethanol when keeping costs fixed. Robust locations having low costs and emissions show where and how improvements are reached, offering instruments for policy (re)design.

[1]  Arnaldo Walter,et al.  Brazilian sugarcane ethanol: developments so far and challenges for the future , 2014 .

[2]  Eli P. Fenichel,et al.  Synchronized peak-rate years of global resources use , 2014 .

[3]  Derek Karssenberg,et al.  Detecting systemic change in a land use system by Bayesian data assimilation , 2016, Environ. Model. Softw..

[4]  Anthony Gar-On Yeh,et al.  Integration of genetic algorithms and GIS for optimal location search , 2005, Int. J. Geogr. Inf. Sci..

[5]  H. Chum,et al.  A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering , 2010 .

[6]  Lazaros G. Papageorgiou,et al.  An optimisation framework for a hybrid first/second generation bioethanol supply chain , 2012, Comput. Chem. Eng..

[7]  Sonia Yeh,et al.  Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies , 2012 .

[8]  N. H. Ravindranath,et al.  2006 IPCC Guidelines for National Greenhouse Gas Inventories , 2006 .

[9]  Lei Wang,et al.  Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward , 2014 .

[10]  Anne-Sophie Perrin,et al.  Cropping systems, carbon sequestration and erosion in Brazil, a review , 2006 .

[11]  Peter H. Verburg,et al.  Combining remote sensing and household level data for regional scale analysis of land cover change in the Brazilian Amazon , 2010 .

[12]  Sebastian Bassi,et al.  Python Language Reference , 2009 .

[13]  Gael Sola,et al.  Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: Two case-studies in contrasting tropical environments , 2013 .

[14]  E. Lambin,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Global land use change, economic globalization, and the looming land scarcity , 2011 .

[15]  Martin Volk,et al.  Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment , 2013, Environ. Model. Softw..

[16]  Martin Volk,et al.  Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales , 2013 .

[17]  Birka Wicke,et al.  Indirect land use change: review of existing models and strategies for mitigation , 2012 .

[18]  A. Bondeau,et al.  Indirect land-use changes can overcome carbon savings from biofuels in Brazil , 2010, Proceedings of the National Academy of Sciences.

[19]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[20]  Daniel Alves Aguiar,et al.  Remote Sensing Images in Support of Environmental Protocol: Monitoring the Sugarcane Harvest in São Paulo State, Brazil , 2011, Remote. Sens..

[21]  Sarah J. Gerssen-Gondelach,et al.  GHG emissions and other environmental impacts of indirect land use change mitigation , 2017 .

[22]  André Faaij,et al.  Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies , 2015 .

[23]  J. Fargione,et al.  The Ecological Impact of Biofuels , 2010 .

[24]  H. van den Belt,et al.  Once the rockets are up, who should care where they come down? The problem of responsibility ascription for the negative consequences of biofuel innovations , 2016, SpringerPlus.

[25]  H. K. Gibbs,et al.  Brazil's Soy Moratorium , 2015, Science.

[26]  Brasil. Ministério de Minas e Energia,et al.  Plano decenal de expansão de energia: 2021 , 2010 .

[27]  Laerte Guimarães Ferreira,et al.  Regional Variations in Biomass Distribution in Brazilian Savanna Woodland , 2014 .

[28]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[29]  Guilherme Fernandes Marques,et al.  Systems capacity expansion planning: Novel approach for environmental and energy policy change analysis , 2016, Environ. Model. Softw..

[30]  David A. Bennett,et al.  Exploring the Solution Space of Semi‐structured Geographical Problems Using Genetic Algorithms , 1999, Trans. GIS.

[31]  A. Faaij,et al.  Mapping land use changes resulting from biofuel production and the effect of mitigation measures , 2018, GCB Bioenergy.

[32]  Edmar I. Teixeira,et al.  Global Agro-Ecological Zones (GAEZ v3.0) , 2012 .

[33]  Theodor J. Stewart,et al.  A genetic algorithm approach to multiobjective land use planning , 2004, Comput. Oper. Res..

[34]  Aie,et al.  World Energy Outlook 2013 , 2013 .

[35]  A. Faaij,et al.  International bioenergy transport costs and energy balance , 2005 .

[36]  N. Batjes,et al.  IPCC default soil classes derived from the Harmonized World Soil Data Base (Ver. 1.0), Carbon Benefits Project (CBP) and ISRIC - World Soil Information , 2009 .

[37]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[38]  Júlio Cesar dos Reis,et al.  Overcoming barriers to low carbon agriculture and forest restoration in Brazil: The Rural Sustentável project , 2016 .

[39]  Daniel Alves Aguiar,et al.  Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data , 2010, Remote. Sens..

[40]  J. Seabra,et al.  Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. , 2008 .

[41]  A. Faaij,et al.  Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term , 2005 .

[42]  R. M. Filho,et al.  Second generation ethanol in Brazil: can it compete with electricity production? , 2011, Bioresource technology.

[43]  Peter Salamon,et al.  A software framework for construction of process-based stochastic spatio-temporal models and data assimilation , 2010, Environ. Model. Softw..

[44]  E. Nieuwlaar,et al.  Introduction to Energy Analysis , 2008 .

[45]  N. Jangpromma,et al.  Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane ( Saccharum officinarum L.) , 2012 .

[46]  Kuan Chong Ting,et al.  Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil , 2016 .

[47]  Ralf Seppelt,et al.  Spatial Optimization of Best Management Practices to Attain Water Quality Targets , 2014, Water Resources Management.

[48]  Dirk Cattrysse,et al.  Spatial optimization of Jatropha based electricity value chains including the effect of emissions from land use change , 2016 .

[49]  Jo Smith,et al.  Greenhouse gas mitigation in agriculture , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  Dirk Cattrysse,et al.  Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review , 2014 .

[51]  J. Sauerborn,et al.  Designing a sustainable land use scenario based on a combination of ecological assessments and economic optimization , 2014 .

[52]  Randy L. Haupt,et al.  The Binary Genetic Algorithm , 2004 .

[53]  A. Faaij,et al.  What can and can't we say about indirect land‐use change in Brazil using an integrated economic – land‐use change model? , 2016 .

[54]  Kerrie A. Wilson,et al.  Mixed policies give more options in multifunctional tropical forest landscapes , 2017 .

[55]  Joaquim E. A. Seabra,et al.  Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use , 2011 .