Relaxation of amorphous multichain polymer systems using inverse kinematics

Atomic scale simulations of polymer materials is a topic of interest since it permits to reduce costly experiments to determine their physicochemical properties. In this context, modeling heterogeneously ordered multichain systems such as amorphous polymers, remains a challenging problem. A recently proposed two-step method consists of iteratively generating the structures using a simplified energy model, and subsequently relaxing the system, considering a more accurate model, in order to reduce its potential energy. This work proposes an improvement of this method by integrating a novel relaxation technique, which applies analytical rebridging moves inspired by robotics. A comparative analysis using models of amorphous polyethylene with different sizes and densities shows that the rebridging scheme described here is very effective for the simulation of long alkanes.

[1]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[2]  Travis D. Boone,et al.  End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains , 1999 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Kurt Kremer,et al.  Rheology and Microscopic Topology of Entangled Polymeric Liquids , 2004, Science.

[5]  U. Suter,et al.  Conformational characteristics of polystyrene , 1994 .

[6]  Albert H. Widmann,et al.  Monte Carlo algorithms for the atomistic simulation of condensed polymer phases , 1995 .

[7]  Jürg Nievergelt,et al.  A novel geometric embedding algorithm for efficiently generating dense polymer structures , 2001 .

[8]  Manuel Laso,et al.  A critical evaluation of novel algorithms for the off-lattice Monte Carlo simulation of condensed polymer phases , 1994 .

[9]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[10]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[11]  Nikos Ch. Karayiannis,et al.  Atomistic Monte Carlo simulation of strictly monodisperse long polyethylene melts through a generalized chain bridging algorithm , 2002 .

[12]  Jürg Nievergelt,et al.  A novel parallel-rotation algorithm for atomistic Monte Carlo simulation of dense polymer systems , 2001 .

[13]  David Curcó,et al.  Simulation of dense amorphous polymers by generating representative atomistic models , 2003 .

[14]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[15]  M. Deem,et al.  Analytical rebridging Monte Carlo: Application to cis/trans isomerization in proline-containing, cyclic peptides , 1999, physics/9904057.

[16]  Carlos Alemán,et al.  Theoretical strategy to provide atomistic models of comblike polymers: a generation algorithm combined with configurational bias Monte Carlo. , 2004, The Journal of chemical physics.

[17]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[18]  Hong Y. Lee,et al.  A new vector theory for the analysis of spatial mechanisms , 1988 .

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[21]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[22]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[23]  Elsayed A. Orady,et al.  Current Advances in Mechanical Design and Production , 1997 .

[24]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[25]  Chaok Seok,et al.  A kinematic view of loop closure , 2004, J. Comput. Chem..

[26]  W. Mattice,et al.  New high-coordination lattice model for rotational isomeric state polymer chains , 1995 .

[27]  D. Theodorou,et al.  A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture. , 2002, Physical review letters.

[28]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[29]  Ulrich W. Suter,et al.  Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .

[30]  Itay Lotan,et al.  Real-space protein-model completion: an inverse-kinematics approach. , 2005, Acta crystallographica. Section D, Biological crystallography.

[31]  Thierry Siméon,et al.  Geometric algorithms for the conformational analysis of long protein loops , 2004, J. Comput. Chem..

[32]  Doros N. Theodorou,et al.  Hierarchical modeling of amorphous polymers , 2005, Comput. Phys. Commun..

[33]  Doros N. Theodorou,et al.  Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts , 1995 .

[34]  David Curcó,et al.  Performance of SuSi: A method for generating atomistic models of amorphous polymers based on a random search of energy minima , 2004, J. Comput. Chem..

[35]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[36]  Kurt Kremer,et al.  Computer simulations for macromolecular science , 2003 .

[37]  David Curcó,et al.  A method for generating reliable atomistic models of amorphous polymers based on a random search of energy minima , 2005, Comput. Phys. Commun..

[38]  W. Mattice,et al.  Rotational isomeric state chains on a high coordination lattice: Dynamic Monte Carlo algorithm details , 2000 .

[39]  J. McKechnie,et al.  Methods of generating dense relaxed amorphous polymer samples for use in dynamic simulations , 1992 .

[40]  C. Alemán,et al.  Computer simulations of amorphous polymers: From quantum mechanical calculations to mesoscopic models , 2009 .

[41]  L. Kavraki,et al.  Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations , 2006, Proteins.

[42]  Rajesh Khare,et al.  Generation of glass structures for molecular simulations of polymers containing large monomer units: application to polystyrene , 1993 .

[43]  Vlasis G. Mavrantzas,et al.  Directed Bridging Methods for Fast Atomistic Monte Carlo Simulations of Bulk Polymers , 2001 .

[44]  David Curcó,et al.  Generation-relaxation algorithms to construct representative atomistic models of amorphous polymers: Influence of the relaxation method , 2004 .

[45]  Modeling the amorphous phase of comb‐like polymers , 2006 .

[46]  Juan J. de Pablo,et al.  Simulation of phase equilibria for chain molecules , 1992 .