Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis

In this Review, we discuss the state-of-the-art understanding of non-precious transition metal oxides that catalyze the oxygen reduction and evolution reactions. Understanding and mastering the kinetics of oxygen electrocatalysis is instrumental to making use of photosynthesis, advancing solar fuels, fuel cells, electrolyzers, and metal–air batteries. We first present key insights, assumptions and limitations of well-known activity descriptors and reaction mechanisms in the past four decades. The turnover frequency of crystalline oxides as promising catalysts is also put into perspective with amorphous oxides and photosystem II. Particular attention is paid to electronic structure parameters that can potentially govern the adsorbate binding strength and thus provide simple rationales and design principles to predict new catalyst chemistries with enhanced activity. We share new perspective synthesizing mechanism and electronic descriptors developed from both molecular orbital and solid state band structure principles. We conclude with an outlook on the opportunities in future research within this rapidly developing field.

[1]  D. Meadowcroft,et al.  Low-cost Oxygen Electrode Material , 1970, Nature.

[2]  Sarma,et al.  Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra. , 1996, Physical review. B, Condensed matter.

[3]  Richard D. Leapman,et al.  Study of the L 23 edges in the 3 d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory , 1982 .

[4]  D. Pletcher,et al.  The electrochemistry of oxygen , 1983 .

[5]  T. Wolfram,et al.  Electronic and Optical Properties of D -Band Perovskites: Distorted perovskites , 2006 .

[6]  Nemanja Danilovic,et al.  Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution , 2014, Nature Communications.

[7]  J Rossmeisl,et al.  On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. , 2011, The Journal of chemical physics.

[8]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[9]  John B. Goodenough,et al.  An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-xSrxCoO3-λ , 1958 .

[10]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[11]  Peter J. Eng,et al.  Structure of the Hydrated α-Al2O3 (0001) Surface , 2000 .

[12]  H. Ogasawara,et al.  Water Adsorption on α-Fe2O3(0001) at near Ambient Conditions , 2010 .

[13]  D. Dowden Crystal and Ligand Field Models of Solid Catalysts , 1972 .

[14]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[15]  H. Gasteiger,et al.  Pt-Free Cathode Catalyst Performance in H2/O2 Anion-Exchange Membrane Fuel Cells (AMFCs) , 2008 .

[16]  H. Bluhm Photoelectron spectroscopy of surfaces under humid conditions , 2010 .

[17]  J. Nørskov,et al.  Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. , 2008, Angewandte Chemie.

[18]  B. Gates,et al.  Impact of surface science on catalysis , 2000 .

[19]  A Tanaka,et al.  Spin state transition in LaCoO3 studied using soft x-ray absorption spectroscopy and magnetic circular dichroism. , 2006, Physical review letters.

[20]  Masaoki Oku,et al.  Application of ferrous-chromate and iodometric titration for the determination of copper oxidation states in the superconductor YBa2Cu3O y@@@Anwendung der Eisen(II)-Chromat- und der iodometrischen Titration zur Bestimmung der Oxidationsstufe des Kupfers im Supraleiter YBa2Cu3O y , 1988 .

[21]  George M Whitesides,et al.  Don't Forget Long-Term Fundamental Research in Energy , 2007, Science.

[22]  H. Gasteiger,et al.  Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode , 2010 .

[23]  P. Hagenmuller,et al.  Electrolytic oxygen evolution in alkaline medium on La/sub 1-x/Sr/sub x/FeO/sub 3-y/ perovskite-related ferrites. I. Electrochemical study , 1987 .

[24]  M. Risch,et al.  Cobalt-oxo core of a water-oxidizing catalyst film. , 2009, Journal of the American Chemical Society.

[25]  Matthew W Kanan,et al.  Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. , 2010, Journal of the American Chemical Society.

[26]  Feng Tao,et al.  Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles , 2008, Science.

[27]  Christian Limberg,et al.  The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis , 2010 .

[28]  Oxygen evolution on semiconducting oxides , 1977 .

[29]  H. Wan,et al.  Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation , 1996 .

[30]  G. Cressey,et al.  Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research , 1993 .

[31]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[32]  Y. Matsumoto,et al.  Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction , 1977 .

[33]  Sergio Trasatti,et al.  Electrocatalysis: understanding the success of DSA® , 2000 .

[34]  D. F. Ogletree,et al.  A differentially pumped electrostatic lens system for photoemission studies in the millibar range , 2002 .

[35]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[36]  P. Nov'ak,et al.  Spin state transition and covalent bonding in LaCoO3 , 2012, 1207.3984.

[37]  K. Uosaki,et al.  Structure of Au(111) and Au(100) Single-Crystal Electrode Surfaces at Various Potentials in Sulfuric Acid Solution Determined by In Situ Surface X-ray Scattering , 2007 .

[38]  Jan Rossmeisl,et al.  Beyond the volcano limitations in electrocatalysis--oxygen evolution reaction. , 2014, Physical chemistry chemical physics : PCCP.

[39]  T. Van Voorhis,et al.  Electronic design criteria for O-O bond formation via metal-oxo complexes. , 2008, Inorganic chemistry.

[40]  P. Balachandran,et al.  Polar Cation Ordering: A Route to Introducing >10% Bond Strain Into Layered Oxide Films , 2014 .

[41]  H. Tamura,et al.  A NEW CATALYST FOR CATHODIC REDUCTION OF OXYGEN: LANTHANUM NICKEL OXIDE , 1975 .

[42]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[43]  E. A. Kraut,et al.  d-Band Surface States on Transition-Metal Perovskite Crystals: I. Qualitative Features and Application to SrTiO 3 , 1973 .

[44]  J. A. Schwarz,et al.  Estimation of the point of zero charge of simple oxides by mass titration , 1989 .

[45]  Tao Zhang,et al.  Structural changes of Au-Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations , 2011 .

[46]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[47]  J. Bockris Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen , 1956 .

[48]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[49]  David S. Ginley,et al.  Transparent Conducting Oxides , 2000 .

[50]  B. Gates,et al.  Simultaneous Presence of Cationic and Reduced Gold in Functioning MgO-Supported CO Oxidation Catalysts: Evidence from X-ray Absorption Spectroscopy , 2002 .

[51]  Junliang Zhang,et al.  Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis , 2007 .

[52]  Different look at the spin state of Co(3+) ions in a CoO(5) pyramidal coordination. , 2003, Physical review letters.

[53]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[54]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[55]  S. Levine,et al.  Theory of the differential capacity of the oxide/aqueous electrolyte interface , 1971 .

[56]  M. Odelius,et al.  Structure and bonding of the water-hydroxyl mixed phase on Pt(111) , 2007 .

[57]  Roy Clarke,et al.  Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs , 2002, Nature materials.

[58]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[59]  G. Sawatzky,et al.  Systematics in band gaps and optical spectra of 3D transition metal compounds , 1990 .

[60]  J. Goodenough Covalency Criterion for Localized vs Collective Electrons in Oxides with the Perovskite Structure , 1966 .

[61]  D. Leonard,et al.  Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells , 2010 .

[62]  Jonas Jansson,et al.  A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts , 2004 .

[63]  S. Overbury,et al.  Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces , 1998 .

[64]  Sean James Ashton,et al.  An Electrochemical Cell Configuration Incorporating an Ion Conducting Membrane Separator between Reference and Working Electrode , 2009, International Journal of Electrochemical Science.

[65]  W. Badawy,et al.  Kinetics of the passivation of molybdenum in acids and alkali solutions as inferred from impedance and potential measurements , 1986 .

[66]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[67]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[68]  H. Beer The Invention and Industrial Development of Metal Anodes , 1980 .

[69]  Karren L. More,et al.  Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces , 2014, Science.

[70]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[71]  G. Sawatzky,et al.  Intermediate-spin state and properties of LaCoO3. , 1996, Physical review. B, Condensed matter.

[72]  John R. Kitchin,et al.  Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides , 2013 .

[73]  Eric Chainet,et al.  Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism , 2007 .

[74]  R. A. Santen,et al.  Interaction of H, O and OH with metal surfaces , 1999 .

[75]  E. Sato,et al.  Oxygen Evolution on La1 − x Sr x Fe1 − y Co y O 3 Series Oxides , 1980 .

[76]  F. Morin,et al.  A conceptual model for surface states and catalysis ond-band perovskites , 1975 .

[77]  Uchida,et al.  Controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray absorption spectroscopy. , 1992, Physical review. B, Condensed matter.

[78]  T. Fukutsuka,et al.  Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline Media , 2014 .

[79]  McCafferty,et al.  Determination of the Surface Isoelectric Point of Oxide Films on Metals by Contact Angle Titration , 1997, Journal of colloid and interface science.

[80]  Ib Chorkendorff,et al.  Understanding the electrocatalysis of oxygen reduction on platinum and its alloys , 2012 .

[81]  Tokura,et al.  Variation of optical gaps in perovskite-type 3d transition-metal oxides. , 1993, Physical review. B, Condensed matter.

[82]  John O. Thomas,et al.  Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study , 2000 .

[83]  A. Grimaud,et al.  Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts , 2012 .

[84]  G. Sawatzky,et al.  Oxygen 1s x-ray-absorption edges of transition-metal oxides. , 1989, Physical review. B, Condensed matter.

[85]  Y. Shao-horn,et al.  Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. , 2012, The journal of physical chemistry letters.

[86]  Y. Matsumoto,et al.  The Mechanism of Oxygen Reduction at a LaNiO3 Electrode , 1978 .

[87]  Y. Shao-horn,et al.  In Situ Studies of the Temperature-Dependent Surface Structure and Chemistry of Single-Crystalline (001)-Oriented La0.8Sr0.2CoO3-δ Perovskite Thin Films. , 2013, The journal of physical chemistry letters.

[88]  I. Chorkendorff,et al.  Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses , 2014 .

[89]  A. Yamada,et al.  The nature of lithium battery materials under oxygen evolution reaction conditions. , 2012, Journal of the American Chemical Society.

[90]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[91]  Ning Li,et al.  Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media , 2004 .

[92]  H. Gasteiger,et al.  Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration , 1998 .

[93]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[94]  M. Grabolle,et al.  Photosynthetic O2 Formation Tracked by Time-Resolved X-ray Experiments , 2005, Science.

[95]  J. Goodenough,et al.  Localized to itinerant electronic transitions in transition-metal oxides with the perovskite structure , 1998 .

[96]  Yang Shao-Horn,et al.  Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells , 2014 .

[97]  M. Polanyi,et al.  Further considerations on the thermodynamics of chemical equilibria and reaction rates , 1936 .

[98]  P. Rüetschi,et al.  Influence of Electrode Material on Oxygen Overvoltage: A Theoretical Analysis , 1955 .

[99]  C. Ballhausen,et al.  Introduction to Ligand Field Theory , 1962 .

[100]  Donald S. McClure,et al.  Optical Spectra of Hydrated Ions of the Transition Metals , 1957 .

[101]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .

[102]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[103]  Satohiro Yoshida,et al.  X-ray absorption (EXAFS/XANES) study of supported vanadium oxide catalysts. Structure of surface vanadium oxide species on silica and γ-alumina at a low level of vanadium loading , 1988 .

[104]  P. Hagenmuller,et al.  Electrolytic Oxygen Evolution in Alkaline Medium on La1 − x Sr x FeO3 − y Perovskite‐Related Ferrites II . Influence of Bulk Properties , 1987 .

[105]  Kenji Takizawa,et al.  The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. , 2007, Biochimica et biophysica acta.

[106]  K. R. Cooper,et al.  Electrical test methods for on-line fuel cell ohmic resistance measurement , 2006 .

[107]  E. Sato,et al.  Oxygen Evolution on La1 − x Sr x CoO3 Electrodes in Alkaline Solutions , 1980 .

[108]  A. Fujimori,et al.  X-ray absorption of the negative charge-transfer material SrFe1-xCoxO3 , 2002 .

[109]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[110]  A. Damjanović,et al.  Kinetics of oxygen evolution and dissolution on platinum electrodes , 1966 .

[111]  David G. Kwabi,et al.  The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides. , 2014, Physical chemistry chemical physics : PCCP.

[112]  G. Somorjai,et al.  Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. , 2010, Journal of the American Chemical Society.

[113]  J. Goodenough,et al.  Electrochemistry of ruthenates. Part 1.—Oxygen reduction on pyrochlore ruthenates , 1983 .

[114]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[115]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[116]  Marek Kosmulski,et al.  pH-dependent surface charging and points of zero charge. IV. Update and new approach. , 2009, Journal of Colloid and Interface Science.

[117]  M. Arenz,et al.  Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. , 2009, Journal of the American Chemical Society.

[118]  Junliang Zhang,et al.  Catalytic Activity−d-Band Center Correlation for the O2 Reduction Reaction on Platinum in Alkaline Solutions , 2007 .

[119]  K. Laidler,et al.  Development of transition-state theory , 1983 .

[120]  Edward A. Stern,et al.  Direct atomic structure determination of epitaxially grown films:Gd2O3on GaAs(100) , 2002 .

[121]  B. Hammer Special Sites at Noble and Late Transition Metal Catalysts , 2006 .

[122]  J. Goodenough,et al.  Magnetic and Transport Properties of the System La1-xSrxCoO3-δ (0 < x ≤ 0.50) , 1995 .

[123]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[124]  Y. Shao-horn,et al.  Revealing the atomic structure and strontium distribution in nanometer-thick La0.8Sr0.2CoO3−δ grown on (001)-oriented SrTiO3 , 2014 .

[125]  M. Hirayama,et al.  Oxygen Evolution and Reduction Reactions on La0.8Sr0.2CoO3 (001), (110), and (111) Surfaces in an Alkaline Solution , 2012 .

[126]  D. F. Ogletree,et al.  Soft X-ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source , 2006 .

[127]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[128]  W. Chueh,et al.  Electrochemistry of mixed oxygen ion and electron conducting electrodes in solid electrolyte cells. , 2012, Annual review of chemical and biomolecular engineering.

[129]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[130]  I. Takeuchi,et al.  La(0.8)Sr(0.2)MnO(3-δ) decorated with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ): a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. , 2014, Journal of the American Chemical Society.

[131]  B. Conway,et al.  Problems in the determination of adsorption behaviour of intermediates in faradaic reactions: Distinction between double layer and adsorption capacitance of electrocatalysts determined from fast potential relaxation transients , 1992 .

[132]  A. Lasia,et al.  Kinetics of hydrogen evolution on nickel electrodes , 1990 .

[133]  T. Venkatesan,et al.  Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale , 2013 .

[134]  J. Goodenough,et al.  Ferromagnetism in LaCoO3 , 2004 .

[135]  Hua Zhou,et al.  Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers , 2009, Proceedings of the National Academy of Sciences.

[136]  R. Larsson,et al.  On the catalytic properties of mixed oxides for the electrochemical reduction of oxygen , 1990 .

[137]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[138]  H. Ogasawara,et al.  The role of substrate electrons in the wetting of a metal surface. , 2010, The Journal of chemical physics.

[139]  Andrew G. Glen,et al.  APPL , 2001 .

[140]  N. Sakai,et al.  Enhancement of Oxygen Surface Exchange at the Hetero-interface of ( La , Sr ) CoO3 / ( La , Sr ) 2CoO4 with PLD-Layered Films , 2008 .

[141]  Jose H. Garcia,et al.  Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO 3 + δ , 1997 .

[142]  M. Armand,et al.  Building better batteries , 2008, Nature.

[143]  M. Döbeli,et al.  Structure determination of monolayer-by-monolayer grown La1-x Srx MnO3 thin films and the onset of magnetoresistance , 2008 .

[144]  H. Löhneysen,et al.  Ferromagnetic order in epitaxially strained La Co O 3 thin films , 2007 .

[145]  K. Wiik,et al.  Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .

[146]  Z. Hussain,et al.  New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. , 2010, The Review of scientific instruments.

[147]  S. Trasatti Electrocatalysis in the anodic evolution of oxygen and chlorine , 1984 .

[148]  J. Nørskov,et al.  Comment on “Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications” , 2013 .

[149]  E. G. Gagnon The Triangular Voltage Sweep Method for Determining Double‐Layer Capacity of Porous Electrodes II . Porous Silver in Potassium Hydroxide , 1975 .

[150]  K. Ohashi,et al.  Impedance of the oxygen-evolution reaction on noble metal electrodes , 1972 .

[151]  M. Karppinen,et al.  Studies on the oxygen stoichiometry in superconducting cuprates by thermoanalytical methods , 1997 .

[152]  A. Damjanović,et al.  Electrode Kinetics of Oxygen Evolution and Dissolution on Rh, Ir, and Pt‐Rh Alloy Electrodes , 1966 .

[153]  Meilin Liu,et al.  Suppression of Sr surface segregation in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ): a first principles study. , 2013, Physical chemistry chemical physics : PCCP.

[154]  N. Marković,et al.  A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. , 2005, The Journal of chemical physics.

[155]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[156]  M. Breiter,et al.  Hydrogen Evolution and Surface Oxidation of Nickel Electrodes in Alkaline Solution , 1964 .

[157]  Sang-Wook Cheong,et al.  Structural phenomena associated with the spin-state transition in LaCoO 3 , 2002, cond-mat/0204636.

[158]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[159]  D. Morgan,et al.  Anomalous Interface and Surface Strontium Segregation in (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ Heterostructured Thin Films. , 2014, The journal of physical chemistry letters.

[160]  C. Dellago,et al.  Transition path sampling and the calculation of rate constants , 1998 .

[161]  J. Goodenough,et al.  Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K-edge X-ray Absorption Spectroscopy , 2014 .

[162]  A. Fujimori Electronic structure of metallic oxides: Band-gap closure and valence control , 1992 .

[163]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[164]  T. Centeno,et al.  On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties , 2006 .

[165]  G. Sawatzky,et al.  Strain-induced spin states in atomically ordered cobaltites. , 2012, Nano letters.

[166]  Zaanen,et al.  Determination of the electronic structure of transition-metal compounds: 2p x-ray photoemission spectroscopy of the nickel dihalides. , 1986, Physical review. B, Condensed matter.

[167]  W. Goddard,et al.  Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications , 2012 .

[168]  S. Pechenyuk The use of the pH at the point of zero charge for characterizing the properties of oxide hydroxides , 1999 .

[169]  Hua Zhou,et al.  Atomic-layer synthesis and imaging uncover broken inversion symmetry in La 2 − x Sr x CuO 4 films , 2013 .

[170]  J. Goodenough,et al.  Bulk modulus anomaly in RCoO3 (R=La, Pr, and Nd) , 2005 .

[171]  O. Sakata,et al.  In situ surface X-ray scattering of stepped surface of platinum: Pt(311). , 2007, Langmuir : the ACS journal of surfaces and colloids.

[172]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[173]  C. Iwakura,et al.  A consideration of the activation energy for the chlorine evolution reaction on RuO2 and IrO2 electrodes , 1979 .

[174]  A. Grimaud,et al.  Oxygen Evolution Activity and Stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The Influence of Transition Metal Coordination , 2013 .

[175]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[176]  D. Guay,et al.  Hydrogen Evolution Reaction in Alkaline Solution Catalytic Influence of Pt Supported on Graphite vs. Pt Inclusions in Graphite , 1996 .

[177]  W. Wynne-Jones,et al.  Acid catalysis in hydrolytic reactions , 1929 .

[178]  G. Laan,et al.  The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry , 1992 .

[179]  Lin Gan,et al.  Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. , 2013, Nature materials.

[180]  C. H. Bamford,et al.  Electrode Kinetics: Principles and Methodology , 1986 .

[181]  O. Petrii,et al.  Real surface area measurements in electrochemistry , 1991 .

[182]  Min Gyu Kim,et al.  A bifunctional perovskite catalyst for oxygen reduction and evolution. , 2014, Angewandte Chemie.

[183]  A. Llobet Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes , 2014 .

[184]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[185]  P. Ross,et al.  Observation of an ordered bromide monolayer at the Pt(111)-solution interface by in-situ surface X-ray scattering , 1995 .

[186]  M. Wohlfahrt‐Mehrens,et al.  Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry , 1987 .

[187]  M. Lazzeri,et al.  Stress-driven reconstruction of an oxide surface: the anatase TiO(2)(001)-(1 x 4) surface. , 2001, Physical review letters.

[188]  F. Opekar,et al.  Rotating disk electrodes , 1976 .

[189]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[190]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[191]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[192]  Meilin Liu,et al.  Recent Progress in Non‐Precious Catalysts for Metal‐Air Batteries , 2012 .

[193]  D. Miller,et al.  Oxidation of Pt(111) under near-ambient conditions. , 2011, Physical review letters.

[194]  Thomas F. Jaramillo,et al.  Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy , 2012 .

[195]  M. Arenz,et al.  Impact of Glass Corrosion on the Electrocatalysis on Pt Electrodes in Alkaline Electrolyte , 2008 .

[196]  F. Morin,et al.  Surface States and Catalysis ond-Band Perovskites , 1973 .

[197]  M. Karppinen,et al.  Oxygen content analysis of functional perovskite-derived cobalt oxides , 2002 .

[198]  R. Metzger,et al.  Why are some oxides metallic, while most are insulating? , 1991 .

[199]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[200]  John B. Goodenough,et al.  Electronic and ionic transport properties and other physical aspects of perovskites , 2004 .

[201]  Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001). , 2005, Physical review letters.

[202]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[203]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[204]  Y. Shao-horn,et al.  Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. , 2014, The journal of physical chemistry letters.

[205]  Venkatasubramanian Viswanathan,et al.  Unifying Solution and Surface Electrochemistry: Limitations and Opportunities in Surface Electrocatalysis , 2014, Topics in Catalysis.

[206]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[207]  J. Goodenough,et al.  Surface protonation and electrochemical activity of oxides in aqueous solution , 1990 .

[208]  E. Sato,et al.  Oxygen evolution on La1-xSrxMnO3 electrodes in alkaline solutions , 1979 .

[209]  Avelino Corma,et al.  Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. , 2005, Journal of the American Chemical Society.

[210]  D. Morgan,et al.  Tuning the Spin State in LaCoO3 Thin Films for Enhanced High-Temperature Oxygen Electrocatalysis. , 2013, The journal of physical chemistry letters.

[211]  Zhou,et al.  Enhanced susceptibility in LNiO3 perovskites ( L = La,Pr,Nd,Nd0.5Sm0. 5) , 2000, Physical review letters.

[212]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[213]  Philip N. Ross,et al.  Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability , 2007, Science.

[214]  D. Nocera,et al.  Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. , 2010, Journal of the American Chemical Society.

[215]  Saitoh,et al.  Electronic structure of 3d-transition-metal compounds by analysis of the 2p core-level photoemission spectra. , 1992, Physical review. B, Condensed matter.

[216]  Thomas Wolfram,et al.  Electronic and optical properties of D-band perovskites , 2006 .

[217]  J. Nørskov,et al.  Universal Brønsted-Evans-Polanyi Relations for C–C, C–O, C–N, N–O, N–N, and O–O Dissociation Reactions , 2011 .

[218]  Ian K. Robinson,et al.  Surface X-ray diffraction , 1987 .

[219]  B. Conway,et al.  Problem of in situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts. Part 1.—Basis for distinction between capacitance of the double layer and the pseudocapacitance due to adsorbed H in the H2 evolution reaction at Pt , 1993 .

[220]  W. Goddard,et al.  Finding Correlations of the Oxygen Reduction Reaction Activity of Transition Metal Catalysts with Parameters Obtained from Quantum Mechanics , 2013 .

[221]  B. Gates,et al.  Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. , 2004, Journal of the American Chemical Society.

[222]  E. Dagotto When Oxides Meet Face to Face , 2007, Science.

[223]  R. Feidenhans'l Surface structure determination by X-ray diffraction , 1989 .

[224]  Ermete Antolini,et al.  The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt–Co catalyst , 2006 .

[225]  H. Dau,et al.  Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. , 2009, Accounts of chemical research.

[226]  S. Trasatti Physical electrochemistry of ceramic oxides , 2010 .

[227]  O. J. Murphy,et al.  The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes , 1977 .

[228]  M. Mavrikakis,et al.  Platinum Monolayer Fuel Cell Electrocatalysts , 2007 .

[229]  Annabella Selloni,et al.  Stress-Driven Reconstruction of an Oxide Surface , 2001 .

[230]  Y. Matsumoto,et al.  Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides , 1977 .

[231]  E. Sato,et al.  Electrocatalytic properties of transition metal oxides for oxygen evolution reaction , 1986 .

[232]  W. Casey,et al.  Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity. , 2011, Journal of the American Chemical Society.

[233]  M. Salmeron,et al.  Autocatalytic Surface Hydroxylation of MgO(100) Terrace Sites Observed Under Ambient Conditions , 2011 .

[234]  E. Sato,et al.  Oxygen evolution on SrFeO3 electrode , 1979 .

[235]  C. Louis,et al.  Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea , 2004 .

[236]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[237]  W. Marsden I and J , 2012 .

[238]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[239]  Bongjin Simon Mun,et al.  Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. , 2007, Nature materials.

[240]  Marc T. M. Koper,et al.  Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis , 2011 .

[241]  P. M. Raccah,et al.  First-order localized-electron collective-electron transition in LaCoO3 , 1967 .

[242]  A. Grimaud,et al.  Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS , 2013 .

[243]  S. Trasatti,et al.  Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7−x)CexO2: oxygen evolution from acidic solution , 1996 .

[244]  Jens K Nørskov,et al.  Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. , 2008, Physical chemistry chemical physics : PCCP.

[245]  Meilin Liu,et al.  Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform , 2011 .

[246]  T. Nonaka,et al.  X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr=1) , 2002 .

[247]  D. B. Hibbert The electrochemical evolution of O2 on NiCo2O4 in 18O-enriched KOH , 1980 .

[248]  T. Voorhis,et al.  What can density functional theory tell us about artificial catalytic water splitting? , 2014, Inorganic chemistry.

[249]  M. Breiter,et al.  Effect of Crystal Structure on the Anodic Oxidation of Nickel , 1963 .

[250]  S. Trasatti Electrocatalysis by oxides — Attempt at a unifying approach , 1980 .

[251]  Z. Nagy,et al.  Applications of surface X-ray scattering to electrochemistry problems , 2002 .

[252]  A. Sawa,et al.  Fermi level shift in La1−xSrxMO3 (M=Mn, Fe, Co, and Ni) probed by Schottky-like heteroepitaxial junctions with SrTi0.99Nb0.01O3 , 2007 .