Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review

ABSTRACT Bulk metallic glasses (BMGs), that display extraordinary properties of high strength, corrosion resistance, polymer-like formability, and excellent magnetic properties, are emerging as modern quintessential engineering materials. BMGs have garnered significant research enthusiasm owing to their tremendous technological and scientific standing. In this article, the recent advancements in the field of BMGs and their applications are put in a nutshell. Novel state-of-the-art production routes and nano/microimprinting strategies with salient features capable of circumventing the processing related complexities as well as accelerating modern developments, are briefly summarized. Heterogeneous BMG composite systems that lead to incredible combination of otherwise conflicting properties are highlighted. Biocorrosion studies and recent developments in the field of magnetic BMGs are presented owing to their significance for prospective biomedical and magnetic applications, respectively. In the last section, the current status of BMGs applications in the field of catalysis, biomedical materials, structural materials, functional materials, microelectromechanical systems (MEMS), and micro/macro devices are summed up.

[1]  A. L. Greer,et al.  Confusion by design , 1993, Nature.

[2]  J. Filipecki,et al.  The effect of annealing on magnetic properties, phase structure and evolution of free volumes in Pr-Fe-B-W metallic glasses , 2017 .

[3]  Yating Chai,et al.  Amorphous metallic glass biosensors , 2012 .

[4]  T. Gloriant Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials , 2003 .

[5]  J. Schroers,et al.  Bulk metallic glass nanowire architecture for electrochemical applications. , 2011, ACS nano.

[6]  Yufeng Zheng,et al.  Study on bio-corrosion and cytotoxicity of a sr-based bulk metallic glass as potential biodegradable metal. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[7]  H. Fan,et al.  Liquid-solid joining of bulk metallic glasses , 2016, Scientific Reports.

[8]  B. Shen,et al.  Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses , 2012 .

[9]  M. Alcoutlabi,et al.  Effects of confinement on material behaviour at the nanometre size scale , 2005 .

[10]  M. Demetriou,et al.  Quantifying the origin of metallic glass formation , 2016, Nature Communications.

[11]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[12]  S. Vitta The limits of glass formation by pulsed laser quenching in NbNi alloys , 1991 .

[13]  E. O’Cearbhaill,et al.  Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools , 2016, Advanced materials.

[14]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[15]  C. Coddet,et al.  Aluminum Matrix Composites Strengthened with CuZrAgAl Amorphous Atomized Powder Particles , 2015, Journal of Materials Engineering and Performance.

[16]  Q. Wei,et al.  Development of Fe-based bulk metallic glasses as potential biomaterials. , 2015, Materials science & engineering. C, Materials for biological applications.

[17]  J. Eckert,et al.  Al-based matrix composites reinforced with short Fe-based metallic glassy fiber , 2015 .

[18]  Forrest S. Gittleson,et al.  Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces , 2016, Advanced materials.

[19]  D. Miracle,et al.  A structural model for metallic glasses , 2004, Microscopy and Microanalysis.

[20]  T. Tran,et al.  Accessing thermoplastic processing windows in metallic glasses using rapid capacitive discharge , 2014, Scientific Reports.

[21]  W. Wang,et al.  Unique properties of CuZrAl bulk metallic glasses induced by microalloying , 2011 .

[22]  Yufeng Zheng,et al.  Recent advances in bulk metallic glasses for biomedical applications. , 2016, Acta biomaterialia.

[23]  Yiyi Yang Tunable Hierarchical Metallic-Glass Nanostructures , 2013 .

[24]  A. Desai,et al.  Thermoplastic Forming of Bulk Metallic Glass— A Technology for MEMS and Microstructure Fabrication , 2007, Journal of Microelectromechanical Systems.

[25]  S. Sastry,et al.  Vitrification of a monatomic metallic liquid , 2007, Nature.

[26]  G. Stewart Non-Fermi-liquid behavior in d- and f-electron metals , 2006 .

[27]  Gang Wang,et al.  Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit , 2014, Scientific Reports.

[28]  J. Schroers,et al.  High quality factor metallic glass cantilevers with tunable mechanical properties , 2014 .

[29]  J. Eckert,et al.  Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study , 2015 .

[30]  L. Arnberg,et al.  Corrosion behavior of bulk amorphous and crystalline Zr‐based alloys in simulated body fluid with and without additions of protein , 2016 .

[31]  M. Demetriou,et al.  Description of millisecond Ohmic heating and forming of metallic glasses , 2013 .

[32]  Yusheng Zhao,et al.  Formation of zirconium metallic glass , 2004, Nature.

[33]  Qiang Li,et al.  Ti50Cu23Ni20Sn7 bulk metallic glasses prepared by mechanical alloying and spark-plasma sintering , 2009 .

[34]  W. Johnson,et al.  Bulk metallic glass matrix composites , 1997 .

[35]  Yufeng Zheng,et al.  Biodegradable CaMgZn bulk metallic glass for potential skeletal application. , 2011, Acta biomaterialia.

[36]  G. Chen,et al.  Magnetocaloric Effect of ${\rm Gd}_{55}{\rm Co}_{20}{\rm Al}_{25}$ Metallic Glass , 2012, IEEE Transactions on Magnetics.

[37]  Shengli Zhu,et al.  Ti Particles Dispersed Ti-Based Metallic Glass Matrix Composite Prepared by Spark Plasma Sintering , 2013 .

[38]  J. Eckert,et al.  Designing biocompatible Ti-based metallic glasses for implant applications. , 2013, Materials science & engineering. C, Materials for biological applications.

[39]  J. B. Hull,et al.  Amorphous nickel produced by splat quenching , 1973 .

[40]  Masayoshi Esashi,et al.  Metallic Glass as a Mechanical Material for Microscanners , 2015 .

[41]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[42]  W. H. Li,et al.  Binary Ni-Nb bulk metallic glasses , 2006 .

[43]  M. Wang,et al.  Molecular dynamics simulation on the micro-structural evolution in heat-affected zone during the preparation of bulk metallic glasses with selective laser melting , 2017 .

[44]  Forrest S. Gittleson,et al.  Bulk metallic glass micro fuel cell. , 2013, Small.

[45]  Wenzheng Li,et al.  Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. , 2007, Angewandte Chemie.

[46]  Cormac Toher,et al.  Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases , 2016, Nature Communications.

[47]  Jan Schroers,et al.  Combinatorial development of bulk metallic glasses. , 2014, Nature materials.

[48]  Han Huang,et al.  The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting , 2014 .

[49]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[50]  A. A. Tsarkov,et al.  Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites , 2016, Scientific Reports.

[51]  J. Schroers,et al.  Nanomoulding with amorphous metals , 2009, Nature.

[52]  Xi Chen,et al.  Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions , 2016 .

[53]  D. V. Louzguine-Luzgin,et al.  Excellent capability in degrading azo dyes by MgZn-based metallic glass powders , 2012, Scientific Reports.

[54]  John Plummer,et al.  Is metallic glass poised to come of age? , 2015, Nature materials.

[55]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[56]  W. Wang,et al.  Tensile plasticity in metallic glasses with pronounced β relaxations. , 2012, Physical review letters.

[57]  A. Hirata,et al.  Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for High‐Efficiency Hydrogen Production , 2014, Advanced materials.

[58]  Eduardo Fernández,et al.  Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity , 2014, Sensors.

[59]  Tao Zhang,et al.  Effects of Metalloid B Addition on the Glass Formation, Magnetic and Mechanical Properties of FePCB Bulk Metallic Glasses , 2015 .

[60]  汪卫华,et al.  Binary Cu-Zr Bulk Metallic Glasses , 2004 .

[61]  T. Shi,et al.  Laser welding of Zr41Ti14Cu12Ni10Be23 bulk metallic glass and zirconium metal , 2014, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[62]  Y. Yang,et al.  Unusual fast secondary relaxation in metallic glass , 2015, Nature Communications.

[63]  T. C. Goel,et al.  Melt-spinning technique for preparation of metallic glasses , 1982 .

[64]  D. Turnbull Under what conditions can a glass be formed , 1969 .

[65]  J. Schroers,et al.  Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses , 2016, Scientific Reports.

[66]  A. Yavari,et al.  A magnesium alloy matrix composite reinforced with metallic glass , 2009 .

[67]  Parmanand Sharma,et al.  Nano-fabrication with metallic glass—an exotic material for nano-electromechanical systems , 2007, Nanotechnology.

[68]  Xi Chen,et al.  Novel Ti-based bulk metallic glasses with superior plastic yielding strength and corrosion resistance , 2015 .

[69]  Akira Shimokohbe,et al.  Microforming of three-dimensional microstructures from thin-film metallic glass , 2003 .

[70]  M. Cohen,et al.  Composition Requirements for Glass Formation in Metallic and Ionic Systems , 1961, Nature.

[71]  E. Rossinyol,et al.  Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. , 2011, Journal of the mechanical behavior of biomedical materials.

[72]  R. Ray,et al.  Metallic glass formation and properties in Zr and Ti alloyed with Be—I the binary Zr-Be and Ti-Be systems☆ , 1979 .

[73]  J. Schroers,et al.  Joining of bulk metallic glasses in air , 2014 .

[74]  Jonghyun Kim Weldability of Cu54Zr22Ti18Ni6 bulk metallic glass by ultrasonic welding processing , 2014 .

[75]  Y. Liu,et al.  Formation and properties of Ti-based Ti–Zr–Cu–Fe–Sn–Si bulk metallic glasses with different (Ti + Zr)/Cu ratios for biomedical application , 2016 .

[76]  Tao Zhang,et al.  Near room-temperature magnetocaloric effect in FeMnPBC metallic glasses with tunable Curie temperature , 2013 .

[77]  J. Eckert,et al.  Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations , 2015 .

[78]  A. Yavari,et al.  Materials science: A new order for metallic glasses , 2006, Nature.

[79]  Minhua Sun,et al.  Role of Zr in icosahedral forming in Cu–Zr metallic glasses , 2015 .

[80]  J. Schroers,et al.  General nanomoulding with bulk metallic glasses , 2015, Nanotechnology.

[81]  Douglas C. Hofmann,et al.  Optimizing Bulk Metallic Glasses for Robust, Highly Wear‐Resistant Gears   , 2017 .

[82]  Yong Yang,et al.  Tunable elastic heterogeneity caused by deformation-induced magnetization in flexible metallic glass , 2017 .

[83]  Yufeng Zheng,et al.  Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses , 2012 .

[84]  Y. Kawamura,et al.  Electron-beam welding of Zr-based bulk metallic glasses , 2004 .

[85]  A. A. Tsarkov,et al.  High-strength and ductile (Ti–Ni)-(Cu–Zr) crystalline/amorphous composite materials with superelasticity and TRIP effect , 2016 .

[86]  V. Eliasson,et al.  Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites , 2016, Scientific Reports.

[87]  Mingwei Chen A brief overview of bulk metallic glasses , 2011 .

[88]  J. D. Bernal,et al.  Geometry of the Structure of Monatomic Liquids , 1960, Nature.

[89]  W. Zeng,et al.  Ultrahigh strength binary Ni–Nb bulk glassy alloy composite with good ductility , 2007 .

[90]  J. Ding,et al.  Magnetic hardening in amorphous alloy Sm60Fe30Al10 , 2001 .

[91]  P. Gaskell A new structural model for transition metal–metalloid glasses , 1978, Nature.

[92]  Hiroki Kuwano,et al.  Current sensors using Fe-B-Nd-Nb magnetic metallic glass micro-cantilevers , 2015 .

[93]  Y. Kawamura,et al.  Friction welding of bulk metallic glasses to different ones , 2004 .

[94]  Jan Schroers,et al.  Atomically smooth surfaces through thermoplastic forming of metallic glass , 2010 .

[95]  M. Demetriou,et al.  Shaping metallic glasses by electromagnetic pulsing , 2016, Nature Communications.

[96]  J. Schroers,et al.  Metallic glass nanostructures of tunable shape and composition , 2015, Nature Communications.

[97]  Wei Zhang,et al.  Extraordinary plasticity of ductile bulk metallic glasses. , 2006, Physical review letters.

[98]  K. Imai,et al.  In Vivo Evaluation of Bulk Metallic Glasses for Osteosynthesis Devices , 2016, Materials.

[99]  Z. Hu,et al.  Fabrication of Binary Ni‐Nb Bulk Metallic Glass with High Strength and Compressive Plasticity , 2006 .

[100]  Steven W. Meeks,et al.  Piezomagnetic and elastic properties of metallic glass alloys Fe67CO18B14Si1 and Fe81B13.5Si3.5C2 , 1983 .

[101]  B. Aksak,et al.  Patterning of metallic glasses using polymer templates , 2015 .

[102]  M. Alcoutlabi,et al.  A comparison of concentration-glasses and temperature-hyperquenched glasses: CO2-formed glass versus temperature-formed glass , 2004 .

[103]  J. Qiao,et al.  Influence of spark plasma sintering parameters on the mechanical properties of Cu50Zr45Al5 bulk metallic glass obtained using metallic glass powder , 2016 .

[104]  Frank Witte,et al.  Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. , 2017, Biomaterials.

[105]  J. Si,et al.  Synthesis of Mg-Zn-Ca metallic glasses by gas-atomization and their excellent capability in degrading azo dyes , 2014 .

[106]  C. Thompson,et al.  Matching Glass-Forming Ability with the Density of the Amorphous Phase , 2008, Science.

[107]  Weiqi Wang,et al.  Bulk Metallic Glasses with Functional Physical Properties , 2009 .

[108]  U. Dahlborg,et al.  Structural study of a phase transition in a NiP metallic glass , 1997 .

[109]  Q. Jiang,et al.  Deformation-induced localized solid-state amorphization in nanocrystalline nickel , 2012, Scientific Reports.

[110]  Santanu Das,et al.  Bi‐Functional Mechanism in Degradation of Toxic Water Pollutants by Catalytic Amorphous Metals , 2016 .

[111]  M. Gupta,et al.  Processing and Properties of Aluminum and Magnesium Based Composites Containing Amorphous Reinforcement: A Review , 2015 .

[112]  Akihiko Hirata,et al.  Direct observation of local atomic order in a metallic glass. , 2011, Nature materials.

[113]  T. Sercombe,et al.  Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties , 2016 .

[114]  Santanu Das,et al.  Electromechanical behavior of pulsed laser deposited platinum‐based metallic glass thin films , 2016 .

[115]  Weihua Wang,et al.  Magnetocaloric effect in Gd-based bulk metallic glasses , 2006 .

[116]  C. Y. Yu,et al.  First-principles prediction and experimental verification of glass-forming ability in Zr-Cu binary metallic glasses , 2013, Scientific Reports.

[117]  Wei Zhang,et al.  Formation, Thermal Stability and Mechanical Properties of Cu-Zr and Cu-Hf Binary Glassy Alloy Rods , 2004 .

[118]  Run‐Wei Li,et al.  Magnetocaloric effect in Fe–Tm–B–Nb metallic glasses near room temperature , 2015 .

[119]  Jin-an Shi,et al.  A room-temperature magnetic semiconductor from a ferromagnetic metallic glass , 2016, Nature Communications.

[120]  T. Lograsso,et al.  Imprinting bulk amorphous alloy at room temperature , 2015, Scientific Reports.

[121]  Heliang Yao,et al.  Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. , 2016, Angewandte Chemie.

[122]  X. Hui,et al.  Ni–Gd–Al metallic glasses with large magnetocaloric effect , 2010 .

[123]  B. S. Murty,et al.  Bio-corrosion and Cytotoxicity Studies on Novel Zr55Co30Ti15 and Cu60Zr20Ti20 Metallic Glasses , 2015, Metallurgical and Materials Transactions A.

[124]  Wei Zhang,et al.  A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response. , 2015, Acta biomaterialia.

[125]  J. Schroers,et al.  Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass , 2014, ACS nano.

[126]  Mihai Stoica,et al.  Processing metallic glasses by selective laser melting , 2013 .

[127]  E H Putley,et al.  The Electrical Conductivity and Hall Effect of Silicon , 1958 .

[128]  A. Takeuchi,et al.  Recent Development and Applications of Bulk Glassy Alloys , 2010 .

[129]  J. Strom-Olsen,et al.  Crystallization characteristics of Ni‐Zr metallic glasses from Ni20Zr80 to Ni70Zr30 , 1983 .

[130]  J. C. Huang,et al.  In vitro biocompatibility response of Ti–Zr–Si thin film metallic glasses , 2014 .

[131]  V. Eliasson,et al.  Designing in situ and ex situ bulk metallic glass composites via spark plasma sintering in the super cooled liquid state , 2016 .

[132]  Tao Zhang,et al.  Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties , 2011 .

[133]  A. Yavari,et al.  Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties , 2003, Nature materials.

[134]  Lin Liu,et al.  Fe-based bulk metallic glass matrix composite with large plasticity , 2010 .

[135]  J. Gutiérrez,et al.  Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite , 2015 .

[136]  D. B. Miracle,et al.  A predictive structural model for bulk metallic glasses , 2015, Nature Communications.

[137]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[138]  H. Fan,et al.  A new TiCuHfSi bulk metallic glass with potential for biomedical applications , 2014 .

[139]  P. Liaw,et al.  Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[140]  J. Kruzic Bulk Metallic Glasses as Structural Materials: A Review , 2016 .

[141]  G. Hwang,et al.  Structure, energetics, and bonding of amorphous Au-Si alloys. , 2007, The Journal of chemical physics.

[142]  Y. Kawamura,et al.  Superplastic bonding of bulk metallic glasses using friction , 2001 .

[143]  Z. Sha,et al.  Ab initio study on the electronic origin of glass-forming ability in the binary Cu–Zr and the ternary Cu–Zr–Al(Ag) metallic glasses , 2015 .

[144]  D. Zhang,et al.  In‐Situ Precipitated Nanocrystal Beneficial to Enhanced Plasticity of Cu‐Zr Based bulk Metallic Glasses , 2008 .

[145]  J. Tse,et al.  Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4. , 2015, The Journal of chemical physics.

[146]  Jiangwei Wang,et al.  Formation of monatomic metallic glasses through ultrafast liquid quenching , 2014, Nature.

[147]  J. Kruzic,et al.  A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders , 2016, Scientific Reports.

[148]  Zhidong Zhang,et al.  Spin-glass behavior and magnetocaloric effect in Tb-based bulk metallic glass , 2009 .

[149]  Lin Liu,et al.  Mechanical Relaxation-to-Rejuvenation Transition in a Zr-based Bulk Metallic Glass , 2017, Scientific Reports.

[150]  Tobias Brink,et al.  Solid-state amorphization of Cu nanolayers embedded in aCu64Zr36glass , 2015, 1505.01380.

[151]  Chang-Hyeon Ji,et al.  A low frequency vibration energy harvester using magnetoelectric laminate composite , 2013 .

[152]  Hongkai Wu,et al.  Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications , 2015, Scientific Reports.

[153]  J. Pelletier,et al.  Amorphous physics and materials: Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review , 2017 .

[154]  Hao Xu,et al.  Effect of Ce addition on the glass-forming ability and hard-magnetic properties of the Nd-Fe-Al bulk metallic glasses , 2017 .

[155]  J. Greer,et al.  Nanolaminates Utilizing Size‐Dependent Homogeneous Plasticity of Metallic Glasses , 2011 .

[156]  J. Qiao,et al.  Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review , 2014 .

[157]  G. Liu,et al.  Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars , 2013, Scientific Reports.

[158]  Zhenghou Zhu,et al.  The study on surface chemical modification of Fe71.5Cu1Nb3Si13.5B9V2 amorphous alloy ribbons and its piezomagnetic effect , 2016 .

[159]  A. Takeuchi,et al.  Preparation of Bulk Pr–Fe–Al Amorphous Alloys and Characterization of Their Hard Magnetic Properties , 1996 .

[160]  Frans Spaepen,et al.  Fe‐B glasses formed by picosecond pulsed laser quenching , 1982 .

[161]  T. Chin,et al.  Fe–Y–M–B (M = Nb or Ta) bulk metallic glasses with ultrahigh strength and good soft magnetic properties , 2007 .

[162]  M. Jafary-Zadeh,et al.  Deployment of a Bulk Metallic Glass-Based Self-Expandable Stent in a Patient-Specific Descending Aorta. , 2016, ACS biomaterials science & engineering.

[163]  Maciej Kowalczyk,et al.  Magnetostrictive Iron-Based Bulk Metallic Glasses for Force Sensors , 2014, IEEE Transactions on Magnetics.

[164]  Lifeng Liu,et al.  Nanoporous pt-co alloy nanowires: fabrication, characterization, and electrocatalytic properties. , 2009, Nano letters.

[165]  Lin Liu,et al.  A Ni-free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications. , 2013, Acta biomaterialia.

[166]  M. Jafary-Zadeh,et al.  Feasibility of using bulk metallic glass for self-expandable stent applications. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[167]  C. Wen,et al.  Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications , 2016, Scientific Reports.

[168]  Liqiang Xu,et al.  Au-Ag alloy nanoporous nanotubes , 2009 .

[169]  Lai‐Chang Zhang,et al.  Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light , 2016, Scientific Reports.

[170]  P. Tiberto,et al.  Magnetic Properties of Bulk Metallic Glasses , 2007 .

[171]  K. Vecchio,et al.  Evaluation of glass-forming ability in metals using multi-model techniques , 2009 .

[172]  J. Schroers Bulk Metallic Glasses , 2013 .

[173]  Yufeng Zheng,et al.  Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids , 2009 .

[174]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[175]  Hui Cao,et al.  Multiscale patterning of a metallic glass using sacrificial imprint lithography , 2015, Microsystems & Nanoengineering.

[176]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[177]  H. Bai,et al.  Relating activation of shear transformation zones to β relaxations in metallic glasses , 2010 .

[178]  A. Inoue,et al.  Development and applications of Fe- and Co-based bulk glassy alloys and their prospects , 2014 .

[179]  Jan Schroers,et al.  Bulk metallic glasses for biomedical applications , 2009 .

[180]  P. Guan,et al.  A Highly Efficient and Self‐Stabilizing Metallic‐Glass Catalyst for Electrochemical Hydrogen Generation , 2016, Advanced materials.

[181]  H. Zohdi,et al.  Effect of Nb addition on corrosion behavior of Fe-based metallic glasses in Ringer's solution for biomedical applications , 2011 .

[182]  H. Vali,et al.  Biocorrosion and biocompatibility of Zr–Cu–Fe–Al bulk metallic glasses , 2013 .

[183]  J. Kobata,et al.  Effects of Ar ion bombardment by unbalanced magnetron sputtering on mechanical and thermal properties of Ti-Cu-Zr-Ni-Hf-Si thin film metallic glass , 2016 .

[184]  Y. Liu,et al.  Cooling-rate induced softening in a Zr50Cu50 bulk metallic glass , 2007 .

[185]  K. An,et al.  Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction , 2017 .

[186]  P. Zeman,et al.  Amorphous Zr-Cu thin-film alloys with metallic glass behavior , 2017 .

[187]  H. Tsai,et al.  3D printing of large, complex metallic glass structures , 2017 .