Responses of young Sitka spruce clones to mechanical perturbation and nutrition: effects on biomass allocation, root development, and resistance to bending

Une machine a « secouer les arbres » a ete mise en place pour etudier les influences d'une perturbation dynamique sur la croissance d'Epinette de Sitka (Picea sitchensis (Bong.) Carr.). Dix clones de huit plantes chacun ont ete secoues pendant 196 jours, a cote de plantes de reference non perturbees. Les arbres ont ete soumis a deux regimes d'alimentation afin de determiner l'influence de la nutrition minerale sur leur comportement mecanique. Aucun effet significatif sur la biomasse de la tige n'a ete observe et la hauteur des plantes soumises au regime d'alimentation le plus eleve semble avoir legerement diminuee. Chez les arbres soumis au regime d'alimentation le plus bas, la section des tiges se trouvant dans le plan de flexion etait plus importante que chez les arbres de reference. Les perturbations mecaniques ont eu pour effet d'accroitre la biomasse des racines principales, ainsi que les rapports biomasse des grosses racines a biomasse des racines fines et biomasse des racines a biomasse des tiges. La section moyenne et la masse des racines principales situees dans le plan de flexion etaient plus elevees chez les arbres perturbes que chez les arbres de reference. Les sections etaient de forme elliptique, de plus grand diametre contenu dans un plan vertical. Ces racines laterales possedaient en outre un systeme de ramification plus riche que les autres. Les effets de clonage ont ete observes dans la plupart des reponses de l'arbre. Les resultats montrent que la resistance a la flexion est accrue chez les plantes secouees soumises au regime d'alimentation le plus bas. Cette adaptation de la croissance a des sollicitations mecaniques permet aux arbres exposes au vent d'ameliorer leur stabilite.

[1]  C. Harrington,et al.  Above- and below-ground characteristics associated with wind toppling in a young Populus plantation , 1996, Trees.

[2]  B. Nicoll,et al.  Adaptive growth of tree root systems in response to wind action and site conditions. , 1996, Tree physiology.

[3]  J. L. Chambers,et al.  Seasonal branch and fine root growth of juvenile loblolly pine five growing seasons after fertilization. , 1996, Tree physiology.

[4]  G. Berntson The Characterization of Topology: A Comparison of Four topological Indices for Rooted Binary Trees , 1995 .

[5]  A. Stokes,et al.  Responses of young trees to wind and shading: effects on root architecture , 1995 .

[6]  A. Stokes,et al.  Wind and Trees: Responses of young trees to wind: effects on root growth , 1995 .

[7]  F. Telewski,et al.  Wind and Trees: Wind-induced physiological and developmental responses in trees , 1995 .

[8]  Alastair H. Fitter,et al.  Architectural analysis of plant root systems , 1992 .

[9]  D. Ray,et al.  The effect of ditches, slope and peat thickness on the water regime of a forested gley soil , 1992 .

[10]  Alastair H. Fitter,et al.  Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species , 1991 .

[11]  F. Telewski Growth, wood density, and ethylene production in response to mechanical perturbation in Pinus taeda. , 1990 .

[12]  F. Telewski,et al.  Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation. , 1986, Physiologia plantarum.

[13]  F. Telewski,et al.  Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. , 1986, Physiologia plantarum.

[14]  R. Lawton WIND STRESS AND ELFIN STATURE IN A MONTANE RAIN FOREST TREE: AN ADAPTIVE EXPLANATION , 1982 .

[15]  F. Telewski,et al.  Thigmomorphogenesis: changes in the morphology and chemical composition induced by mechanical perturbation in 6-month-old Pinustaeda seedlings , 1981 .

[16]  M. Coutts,et al.  16 – MINERAL NUTRITION AND TREE ROOT GROWTH , 1980 .

[17]  M. Coutts,et al.  The Influence of Mineral Nutrition on the Root Development of Trees II. THE EFFECT OF SECIFIC NUTRIENT ELEMENTS ON THE GROWTH OF INDIVIDUAL ROOTS OF SITKA SPRUCE , 1977 .

[18]  M. Coutts,et al.  The Influence of Mineral Nutrition on the Root Development of Trees I. THE GROWTH OF SITKA SPRUCE WITH DIVIDED ROOT SYSTEMS , 1976 .

[19]  David Read,et al.  RELATIONSHIP BETWEEN SOIL AERATION, STABILITY AND GROWTH OF SITKA SPRUCE (PICEA-SITCHENSIS (BONG) CARR) ON UPLAND PEATY GLEYS , 1976 .

[20]  Diana M. Smith,et al.  Effect of Mechanical Stress on Growth and Anatomical Structure of Red Pine (Pinusresinosa Ait.): Torque Stress , 1975 .

[21]  P. Larson Stem Form of Young Larix As Influenced by Wind and Pruning , 1965 .

[22]  George B. Rigg,et al.  THE ROOT SYSTEMS OF TREES GROWING IN SPHAGNUM , 1931 .

[23]  Alexia Stokes,et al.  Tree Root Response to Mechanical Stress , 1997 .

[24]  C. Quine Forests and wind : management to minimise damage , 1995 .

[25]  B. Nicoll,et al.  Wind and Trees: Wind stability factors in tree selection: distribution of biomass within root systems of Sitka spruce clones , 1995 .

[26]  Alastair H. Fitter,et al.  Functional significance of root morphology and root system architecture , 1985 .

[27]  M. P. Coutts,et al.  Development of the Structural Root System of Sitka Spruce , 1983 .

[28]  P. Savill The Effects of Drainage and Ploughing of Surface Water Gleys on Rooting and Windthrow of Sitka Spruce in Northern Ireland , 1976 .