Blind channel identification: subspace tracking method without rank estimation

Subspace (SS) methods are an effective approach for blind channel identification. However, these methods also have two major disadvantages: 1) They require accurate channel length estimation and/or rank estimation of the correlation matrix, which is difficult with noisy channels, and 2) they require a large amount of computation for the singular value decomposition (SVD), which makes it inconvenient for adaptive implementation. Although many adaptive subspace tracking algorithms can be applied, the computational complexity is still O(m/sup 3/), where m is the data vector length. In this paper, we introduce new recursive subspace algorithms using ULV updating and successive cancellation techniques. The new algorithms do not need to estimate the rank of the correlation matrix. Furthermore, the channel length can be overestimated initially and be recovered at the end by a successive cancellation procedure, which leads to more convenient implementations. The adaptive algorithm has computations of O(m/sup 2/) in each recursion. The new methods can be applied to either the single user or the multiuser cases. Simulations demonstrate their good performance.

[1]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[2]  Alle-Jan van der Veen Subspace tracking using a constrained hyperbolic URV decomposition , 1998, ICASSP.

[3]  H. Luetkepohl The Handbook of Matrices , 1996 .

[4]  Ronald D. DeGroat,et al.  Noniterative subspace tracking , 1992, IEEE Trans. Signal Process..

[5]  H. Vincent Poor,et al.  Blind adaptive multiuser detection in multipath CDMA channels based on subspace tracking , 1998, IEEE Trans. Signal Process..

[6]  Philippe Loubaton,et al.  Prediction error method for second-order blind identification , 1997, IEEE Trans. Signal Process..

[7]  Donald W. Tufts,et al.  Two algorithms for fast approximate subspace tracking , 1999, IEEE Trans. Signal Process..

[8]  C. Loan On estimating the condition of eigenvalues and eigenvectors , 1987 .

[9]  Jean Pierre Delmas,et al.  Performance analysis of an adaptive algorithm for tracking dominant subspaces , 1998, IEEE Trans. Signal Process..

[10]  Georgios B. Giannakis,et al.  Blind fractionally spaced equalization of noisy FIR channels: direct and adaptive solutions , 1997, IEEE Trans. Signal Process..

[11]  Christian H. Bischof,et al.  On updating signal subspaces , 1992, IEEE Trans. Signal Process..

[12]  Murat Torlak,et al.  Blind multiuser channel estimation in asynchronous CDMA systems , 1997, IEEE Trans. Signal Process..

[13]  Xiaohua Li,et al.  QR Factorization Based Blind Channel Identification and Equalization with Second-Order Statistics , 2000 .

[14]  Joos Vandewalle,et al.  Combined Jacobi-type algorithms in signal processing , 1990 .

[15]  Benoît Champagne,et al.  Plane rotation-based EVD updating schemes for efficient subspace tracking , 1998, IEEE Trans. Signal Process..

[16]  G. Stewart Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..

[17]  H. Howard Fan,et al.  QR factorization based blind channel identification with second-order statistics , 2000, IEEE Trans. Signal Process..

[18]  Philippe Loubaton,et al.  A subspace algorithm for certain blind identification problems , 1997, IEEE Trans. Inf. Theory.

[19]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[20]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[21]  H. Howard Fan,et al.  Direct estimation of blind zero-forcing equalizers based on second-order statistics , 2000, IEEE Trans. Signal Process..

[22]  M. F. Griffin,et al.  Direction-of-arrival estimation using the rank-revealing URV decomposition , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[23]  H. Vincent Poor,et al.  Blind equalization and multiuser detection in dispersive CDMA channels , 1998, IEEE Trans. Commun..

[24]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[25]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[26]  H. Howard Fan,et al.  Linear prediction methods for blind fractionally spaced equalization , 2000, IEEE Trans. Signal Process..

[27]  Jang-Gyu Lee,et al.  On updating the singular value decomposition , 1996, Proceedings of International Conference on Communication Technology. ICCT '96.