A quantum-inspired evolutionary algorithm for fuzzy classification

This paper presents a new optimization algorithm based on quantum-inspired evolutionary techniques that simultaneously incorporates two important features: (i) the treatment of multiple objectives and (ii) the treatment of related categorical attributes, applicable to a specific form of combinatorial optimization. The proposed optimization algorithm is applied to the development of fuzzy inference systems for classification, seeking to achieve the goals of maximum efficiency ratings and high level of system interpretability.

[1]  M. Pacheco,et al.  Quantum-Inspired Evolutionary Algorithm for Numerical Optimization , 2006 .

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Francisco Herrera,et al.  Genetic fuzzy systems: taxonomy, current research trends and prospects , 2008, Evol. Intell..

[4]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[6]  Fernando G. Lobo,et al.  Introduction to Estimation of Distribution Algorithms , 2012 .

[7]  Hisao Ishibuchi,et al.  Comparison of the Michigan and Pittsburgh approaches to the design of fuzzy classification systems , 1997 .

[8]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[9]  Jong-Hwan Kim,et al.  Quantum-inspired Multiobjective Evolutionary Algorithm for Multiobjective 0/1 Knapsack Problems , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[10]  Michael Defoin-Platel,et al.  Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA , 2009, IEEE Transactions on Evolutionary Computation.

[11]  Gexiang Zhang,et al.  Quantum-inspired evolutionary algorithms: a survey and empirical study , 2011, J. Heuristics.

[12]  H. Ishibuchi,et al.  Distributed representation of fuzzy rules and its application to pattern classification , 1992 .

[13]  한국현,et al.  Quantum-inspired evolutionary algorithm = 양자 개념을 도입한 진화 알고리즘 , 2003 .

[14]  Hisao Ishibuchi,et al.  Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning , 2007, Int. J. Approx. Reason..

[15]  Francisco Herrera,et al.  Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures , 2011, Inf. Sci..