Equations in Words

This chapter discusses equations in words. The notion of an equation in words has been introduced in the framework of group theory. The concept is related to much older ones such as the presentations of groups. Solving an equation in words in the free monoid is a particular case of a unification problem. Indeed, a word on the alphabet A can be viewed as a term in the free algebra on the set A of variables with one function symbol subject to the law of associativity. A solution of an equation ( u, v ) in the free monoid A * is just the same as a unifier of the terms corresponding to u and v . It explains that instead of concentrating on the set of solutions of a given equation, one may consider a fixed morphism s : A* → B* and look for the set of equations ( u, v ) satisfied by s . This is of course the rational binary relation of the form s −1 s .

[1]  Juhani Karhumäki,et al.  The Ehrenfeucht Conjecutre: A Compactness Claim for Finitely Generated Free Monoids , 1984, Theor. Comput. Sci..

[2]  Giuseppina Rindone Sur Les Groupes Syntaxiques D'un Langage , 1985, RAIRO Theor. Informatics Appl..

[3]  E Barbin-Le Rest,et al.  On the combinatorial problem of codes composed of two words , 1985 .

[4]  Sur la classification syntaxique , 1983 .

[5]  G. Makanin EQUATIONS IN A FREE GROUP , 1983 .

[6]  Arto Salomaa The Ehrenfeucht conjecture: a proof for language theorists , 1985, Bull. EATCS.

[7]  On fixed points of automorphisms of finitely generated free groups , 1983 .

[8]  Christine Duboc,et al.  On Some Equations in Free Partially Commutative Monoids , 1986, Theor. Comput. Sci..

[9]  G. Makanin The Problem of Solvability of Equations in a Free Semigroup , 1977 .

[10]  J. C. Spehner Les presentations des sous-monoides de rang 3 d'un monoide libre , 1981 .

[11]  Habib Abdulrab Résolution d'équations sur les mots : étude et implémentation Lisp de l'algorithme de Makanin , 1987 .

[12]  Jean-Pierre Pécuchet Sur la Determination du Rang d'une Equation dans le Monoide Libre , 1981, Theor. Comput. Sci..

[13]  Yves Métivier,et al.  Recognizable Subsets of Some Partially Abelian Monoids , 1985, Theor. Comput. Sci..

[14]  R. Lyndon Equations in free groups , 1960 .

[15]  G. Huet,et al.  Equations and rewrite rules: a survey , 1980 .

[16]  D. Piollet Equations quadratiques dans le groupe libre , 1975 .

[17]  J. Berstel,et al.  Sur le théorème du défaut , 1979 .

[18]  William M. Farmer,et al.  A unification algorithm for second-order monadic terms , 1988, Ann. Pure Appl. Log..

[19]  Michael H. Albert,et al.  A Proof of Ehrenfeucht's Conjecture , 1985, Theor. Comput. Sci..