Low-noise fiber-laser frequency combs (Invited)

We discuss experimental and theoretical aspects of a low-noise fiber-laser frequency comb, including the experimental configuration and the major contributions to the frequency noise and linewidth of the individual comb modes. Intracavity noise sources acting on the mode-locked laser determine the free-running comb linewidth and include environmental changes, pump noise, and amplified spontaneous emission (ASE). Extracavity noise sources acting outside of the laser typically determine the signal-to-noise ratio on the comb lines and include environmental effects, shot noise, and noise generated during supercontinuum generation. Feedback strongly suppresses these intracavity noise contributions, yielding a system that operates with comb linewidths and timing jitter below the quantum limit set by the intracavity ASE. Finally, we discuss correlations in the residual noise across a phase-locked comb.

[1]  U. Keller,et al.  Optical phase noise and carrier-envelope offset noise of mode-locked lasers , 2006 .

[2]  P. Ho Phase and amplitude fluctuations in a mode-locked laser , 1985 .

[3]  David J. Jones,et al.  Remote transfer of a high-stability and ultralow-jitter timing signal. , 2005, Optics letters.

[4]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[5]  J. L. Hall,et al.  Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum. , 2000, Optics letters.

[6]  Gesine Grosche,et al.  Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. , 2004, Optics express.

[7]  H. Schnatz,et al.  Frequency metrology using fiber-based fs-frequency combs , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[8]  Shu Namiki,et al.  Relaxation oscillation behavior in polarization additive pulse mode‐locked fiber ring lasers , 1996 .

[9]  Rüdiger Paschotta,et al.  Noise of mode-locked lasers (Part II): timing jitter and other fluctuations , 2004 .

[10]  Thomas G. Brown,et al.  Supercontinuum generation in a fiber grating , 2004 .

[11]  N. Newbury,et al.  Elimination of pump-induced frequency jitter on fiber-laser frequency combs. , 2006, Optics letters.

[12]  Nathan R Newbury,et al.  Wavelength references for interferometry in air. , 2005, Applied optics.

[13]  A.D. Yablon,et al.  UV processing of highly nonlinear fibers for enhanced supercontinuum generation , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[14]  Hirokazu Kubota,et al.  Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton–amplified spontaneous-emission interaction , 1999 .

[15]  Eiji Yoshida,et al.  Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber , 1998 .

[16]  L. Hollberg,et al.  Stabilization of femtosecond laser frequency combs with subhertz residual linewidths. , 2004, Optics letters.

[17]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[18]  J W Nicholson,et al.  Supercontinuum generation in ultraviolet-irradiated fibers. , 2004, Optics letters.

[19]  Scott A. Diddams,et al.  Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level , 2004, Science.

[20]  E. A. Curtis,et al.  An Optical Clock Based on a Single Trapped 199Hg+ Ion , 2001, Science.

[21]  Nathan Newbury,et al.  Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber. , 2004, Optics express.

[22]  C. Fallnich,et al.  Frequency stabilization of mode-locked Erbium fiber lasers using pump power control , 2004 .

[23]  K. Minoshima,et al.  High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. , 2000, Applied optics.

[24]  Hermann A. Haus,et al.  Noise of mode-locked lasers , 1993, Optical Society of America Annual Meeting.

[25]  Jun Ye,et al.  Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. , 2005, Optics letters.

[26]  Fred L. Walls,et al.  RF Spectrum of a Signal after Frequency Multiplication; Measurement and Comparison with a Simple Calculation , 1975, IEEE Transactions on Instrumentation and Measurement.

[27]  Nathan R Newbury,et al.  Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. , 2004, Optics letters.

[28]  K Feder,et al.  Fiber-laser-based frequency comb with a tunable repetition rate. , 2004, Optics express.

[29]  H. Haus,et al.  77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. , 1993, Optics letters.

[30]  U. Keller,et al.  Nearly quantum noise limited timing jitter from miniature Er:Yb:glass lasers , 2005, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005..

[31]  J W Nicholson,et al.  All-fiber, octave-spanning supercontinuum. , 2003, Optics letters.

[32]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[33]  R. Windeler,et al.  Noise amplification during supercontinuum generation in microstructure fiber. , 2003, Optics letters.

[34]  Govind P. Agrawal,et al.  Gordon-Haus timing jitter in dispersion-managed systems with lumped amplification , 2002 .

[35]  R. Windeler,et al.  Fundamental noise limitations to supercontinuum generation in microstructure fiber. , 2002, Physical review letters.

[36]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[37]  Hirokazu Matsumoto,et al.  Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb. , 2006, Optics express.

[38]  L. B. Mercer,et al.  1/f frequency noise effects on self-heterodyne linewidth measurements , 1990 .

[39]  P. Westbrook,et al.  Improved stabilization of a 1.3 microm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating. , 2006, Optics letters.

[40]  I Hartl,et al.  Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology. , 2005, Optics express.

[41]  Alfred Leitenstorfer,et al.  Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution. , 2003, Optics express.

[42]  Rajarshi Roy,et al.  Extracavity laser band-shape and bandwidth modification , 1982 .

[43]  Carsten Fallnich,et al.  Phase-locked carrier-envelope-offset frequency at 1560 nm. , 2004, Optics express.

[44]  H. Haus,et al.  Group velocity of solitons. , 2001, Optics letters.

[45]  Leo W. Hollberg,et al.  Low-noise synthesis of microwave signals from an optical source , 2005 .

[46]  William C. Swann,et al.  Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions , 2006 .

[47]  Feng-Lei Hong,et al.  Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement using the second harmonic generation of a mode-locked fiber laser , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[48]  David J. Jones,et al.  Control of the frequency comb from a modelocked Erbium-doped fiber laser. , 2002, Optics express.

[49]  Burghard Lipphardt,et al.  Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements , 2002 .

[50]  Erik Benkler,et al.  Circumvention of noise contributions in fiber laser based frequency combs. , 2005, Optics express.

[51]  A Amy-Klein,et al.  Long-distance frequency dissemination with a resolution of 10(-17). , 2005, Physical review letters.

[52]  R. Windeler,et al.  Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber , 2003 .

[53]  Hermann A. Haus,et al.  Quantum noise in a solitonlike repeater system , 1991 .

[54]  H Matsumoto,et al.  Frequency metrology with a turnkey all-fiber system. , 2004, Optics letters.

[55]  N. Newbury,et al.  Frequency-resolved coherent LIDAR using a femtosecond fiber laser , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[56]  Gesine Grosche,et al.  Long term comparison of two fiber based frequency comb systems. , 2005, Optics express.

[57]  N. Newbury,et al.  Response dynamics of the frequency comb output from a femtosecond fiber laser. , 2005, Optics express.

[58]  I Hartl,et al.  Fiber-laser frequency combs with subhertz relative linewidths. , 2006, Optics letters.