Adaptive Methods for PDE's Wavelets or Mesh Refinement?
暂无分享,去创建一个
[1] Claudio Canuto,et al. A wavelet-based adaptive finite element method for advection-diffusion equations , 1997 .
[2] Barna L. Bihari,et al. Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..
[3] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[4] Albert Cohen,et al. Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..
[5] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[6] Silvia Bertoluzza. An adaptive collocation method based on interpolating wavelets , 1997 .
[7] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[8] Wolfgang Dahmen,et al. Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.
[9] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[10] Wolfgang Dahmen,et al. Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..
[11] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[12] P. Petrushev. Direct and converse theorems for spline and rational approximation and besov spaces , 1988 .
[13] A. Harten. Adaptive Multiresolution Schemes for Shock Computations , 1994 .
[14] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[15] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[16] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[17] Vladimir N. Temlyakov,et al. The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..
[18] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[19] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[20] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[21] Ronald A. DeVore,et al. High order regularity for conservation laws , 1990 .
[22] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[23] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[24] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[25] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Elliptic Problems - Implementation and Numerical Experiments , 2001, SIAM J. Sci. Comput..
[26] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[27] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[28] ValueProblemsStephan,et al. Besov Regularity for Elliptic Boundary , 1995 .
[29] Sidi Mahmoud Kaber,et al. Fully adaptive multiresolution nite volume s hemes for onservation , 2000 .
[30] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[31] R. DeVore,et al. Besov regularity for elliptic boundary value problems , 1997 .
[32] Wolfgang Dahmen,et al. Multiresolution schemes for conservation laws , 2001 .