Adaptive Methods for PDE's Wavelets or Mesh Refinement?

Adaptive mesh refinement techniques are nowadays an established and powerful tool for the numerical discretization of PDE's. In recent years, wavelet bases have been proposed as an alternative to these techniques. The main motivation for the use of such bases in this context is their good per­ formances in data compression and the approximation theoretic foundations which allow to analyze and optimize these performances. We shall discuss these theoretical foundations, as well as one of the approaches which has been followed in developing efficient adaptive wavelet solvers. We shall also discuss the similarities and differences between wavelet methods and adaptive mesh refinement.

[1]  Claudio Canuto,et al.  A wavelet-based adaptive finite element method for advection-diffusion equations , 1997 .

[2]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[3]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[4]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[5]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[6]  Silvia Bertoluzza An adaptive collocation method based on interpolating wavelets , 1997 .

[7]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[8]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[9]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[10]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  P. Petrushev Direct and converse theorems for spline and rational approximation and besov spaces , 1988 .

[13]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[14]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[15]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[16]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[17]  Vladimir N. Temlyakov,et al.  The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..

[18]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[19]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[20]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[21]  Ronald A. DeVore,et al.  High order regularity for conservation laws , 1990 .

[22]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[23]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[24]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[25]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Elliptic Problems - Implementation and Numerical Experiments , 2001, SIAM J. Sci. Comput..

[26]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[27]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[28]  ValueProblemsStephan,et al.  Besov Regularity for Elliptic Boundary , 1995 .

[29]  Sidi Mahmoud Kaber,et al.  Fully adaptive multiresolution nite volume s hemes for onservation , 2000 .

[30]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[31]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[32]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001 .