Ultra High Transmission Capacity of Undersea Optical Fiber Cables for Upgrading UW-WDM Submarine Systems
暂无分享,去创建一个
[2] H. Henschel,et al. Effect of natural radioactivity on optical fibers of undersea cables , 1996 .
[3] A. Rashed,et al. Ultra wide band (UWB) of optical fiber Raman amplifiers in advanced optical communication networks , 2009 .
[4] A. Mohammed,et al. Applications of Arrayed Waveguide Grating (AWG) in Passive Optical Networks , 2009 .
[5] Abd El Naser A. Mohammed,et al. Low Loss a thermal Arrayed Waveguide Grating (AWG) Module for Passive and Active Optical Network Applications , 2009, Int. J. Commun. Networks Inf. Secur..
[6] Jingshown Wu,et al. Extending transmission distance of high-density WDM systems using post transmitter fiber Raman amplifiers , 1991 .
[7] A.N. Pilipetskii,et al. High-capacity undersea long-haul systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.
[8] B. Mikkelsen,et al. DWDM 40 G transmission over trans-Pacific distance (10,000 km) casing CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km UltraWave/spl trade/ fiber spans , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..
[9] M. Koshiba,et al. Time-domain beam propagation method for nonlinear optical propagation analysis and its application to photonic Crystal circuits , 2003, Journal of Lightwave Technology.
[10] A. Mohammed,et al. Thermal Sensitivity Coefficients of The Fabrication Materials Based A thermal Arrayed Waveguide Grating (AWG) in Wide Area Dense Wavelength Division Multiplexing Optical Networks , 2009 .
[11] Gabriel Charlet,et al. Upgrading WDM Submarine Systems to 40-Gbit/s Channel Bitrate , 2006, Proceedings of the IEEE.
[12] K. Amano,et al. Optical fiber submarine cable systems , 1990 .
[13] Abd El Naser A. Mohammed,et al. High Transmission Bit Rate of A thermal Arrayed Waveguide Grating (AWG) Module in Passive Optical Networks , 2009, ArXiv.
[14] M. Vaa,et al. First dispersion-flattened transpacific undersea system: from design to terabit/s field trial , 2004, Journal of Lightwave Technology.
[15] Frank W. Kerfoot,et al. Undersea fiber optic networks: past, present, and future , 1998, IEEE J. Sel. Areas Commun..
[16] M. Fujiwara,et al. Application of super-DWDM technologies to terrestrial terabit transmission systems , 2006, Journal of Lightwave Technology.
[17] Y. Akasaka,et al. DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans , 2004, Journal of Lightwave Technology.
[18] H. Yajima,et al. Pressure-dependent Sellmeier coefficients and material dispersions for silica fiber glass , 1998 .
[19] Jau Tang. The multispan effects of Kerr nonlinearity and amplifier noises on Shannon channel capacity of a dispersion-free nonlinear optical fiber , 2001 .
[20] S. Stulz,et al. High spectral density long-haul 40-Gb/s transmission using CSRZ-DPSK format , 2004, Journal of Lightwave Technology.
[22] Mohamed M. E. El-Halawany,et al. Recent Applications of Optical Parametric Amplifiers in Hybrid WDM TDM Local Area Optical Networks , 2009, ArXiv.
[23] S. Bigo. Modelling of WDM terrestrial and submarine links for the design of WDM networks , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.
[24] T. Hashimoto,et al. 100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform , 2004, Journal of Lightwave Technology.
[25] Jau Tang. The Shannon channel capacity of dispersion-free nonlinear optical fiber transmission , 2001 .