On Local Borg–Marchenko Uniqueness Results

Abstract:We provide a new short proof of the following fact, first proved by one of us in 1998: If two Weyl–Titchmarsh m-functions, mj(z), of two Schrödinger operators , j≡ 1,2 in L2((0,R)), 0<R≤∞, are exponentially close, that is, , 0<a<R, then q1≡q2 a.e. on [0,a]. The result applies to any boundary conditions at x≡ 0 and x≡R and should be considered a local version of the celebrated Borg–Marchenko uniqueness result (which is quickly recovered as a corollary to our proof). Moreover, we extend the local uniqueness result to matrix-valued Schrödinger operators.

[1]  V. I. Kogan,et al.  1.—On Square-integrable Solutions of Symmetric Systems of Differential Equations of Arbitrary Order. , 1976, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  J. K. Shaw,et al.  On Boundary Value Problems for Hamiltonian Systems with Two Singular Points , 1984 .

[3]  J. K. Shaw,et al.  Hamiltonian systems of limit point or limit circle type with both endpoints singular , 1983 .

[4]  V. A. Marchenko,et al.  The Inverse Problem of Scattering Theory , 1963 .

[5]  J. K. Shaw,et al.  On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems , 1981 .

[6]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[7]  A. Ramm Property C for Ordinary Differential Equations and Applications to Inverse Scattering , 1999 .

[8]  B. M. Levitan,et al.  Determination of a Differential Equation by Two of its Spectra , 1964 .

[9]  Steve Clark,et al.  Weyl-titchmarsh M -function Asymptotics for Matrix-valued Schr¨odinger Operators , 2022 .

[10]  W. N. Everitt On a Property of the M -Coefficient of a Secondorder Linear Differential Equation , 1972 .

[11]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[12]  Allan M. Krall,et al.  M (λ) theory for singular Hamiltonian systems with two singular points , 1989 .

[13]  F. Atkinson On the location of the Weyl circles , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[15]  Property C for ODE and applications , 2000, math-ph/0008002.

[16]  Alexander G. Ramm,et al.  Property C for ODE and applications to inverse problems. , 1999 .

[17]  V. Marchenko Sturm-Liouville Operators and Applications , 1986 .

[18]  Barry Simon,et al.  A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.

[19]  Barry Simon,et al.  A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.

[20]  B. Simon,et al.  Stochastic Schrödinger operators and Jacobi matrices on the strip , 1988 .

[21]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[22]  B. Simon,et al.  Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators , 1996 .

[23]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .